726 research outputs found

    Seismotectonically Active Zones in the Dinarides

    Get PDF
    Seismotectonically active zones are formed due to displacements of segments of the Adriatic micro-plate that differ in size and in their rate of movement, and by the resistance of the rock masses of the Dinarides. The spatial position of these zones can be determined through the locations of earthquake foci. The zones of seismotectonic activity are then correlated with the most important faults on the surface. The seismotectonically active zones are relatively steeply inclined in the shallowest 10-20 km, which is caused by the oblique contacts between the Adriatic micro-plate and the Dinarides. The zones are curved at depth in many cases, which reflects the compression of the area. Curved parts of the zones are characterised by the greatest pressures and also by the most frequent earthquakes. Mildly inclined zones reflect the reverse displacements in the area, also probably the activity on contacts between rock masses of different density, or the extension of the Adriatic micro-plate subduction. The southern part of the plate is the most active. The greatest pressures caused by these movements occur in the area between Mljet island and Dubrovnik. Therefore the majority of earthquakes, and notably the strongest ones, occur in the area between Split, Imotski, Hvar island and Dubrovnik, as well as along the Montenegro coast in a SE direction

    Recent Tectonic Activity in the Imotsko Polje Area

    Get PDF
    Displacements of the Adriatic microplate, particularly of its southern part, are of crucial importance for the understanding of recent tectonic movements. Deformations of the structural fabric and the resulting tectonic activity also encompass the studied area. There are four most active fault zones - Mosor-Biokovo, Zagvozd-Vrgorac-Metkovic, Trilj-Tihaljina-Capljina and Imotski-Medjugorje-Popovo polje. In the explored area, these zones delimit the Imotsko polje. The calculated regional stress is oriented in the range between 10-190° and 350-170°. The relationship between the orientation of structural units and stress enables reverse displacements, most frequently in the direction of the south and south-east. The change in stress orientation in the Mt. Biokovo hinterland makes the aforementioned fault zones surrounding the Imotsko polje favourably oriented in respect to the stress, thus enabling dextral horizontal tectonic transport of the structures in different fault blocks. In the two fault zones - Trilj-Tihaljina-Capljina and Imotski-Medjugorje-Popovo polje, there are 98 outcrops suitable for the structural geology measurements. The obtained data on the local stress orientation and spatial displacement of structures are the most important. The character of faults and the most active fault sections are marked, as well as the local structures that are formed due to strong horizontal component of structural displacement in the studied fault zones. Recent tectonic activity is confirmed by the occurrence of earthquakes. Spatial distribution of the earthquake epicentres depicts zones of seismotectonic activity that are related to the aforementioned most important fault zones. Two of the fault zones - Trilj-Tihaljina-Capljina and Imotski-Medjugorje-Popovo polje are especially well marked by earthquakes occurring at depths of between 3 and 15 km

    Whole-Body MRI and Ethnic Differences in Adipose Tissue and Skeletal Muscle Distribution in Overweight Black and White Adolescent Boys

    Get PDF
    It is unclear whether ethnic differences exist in adipose tissue (AT) and skeletal muscle (SM) distribution in black and white youth. Investigation into the pattern of AT and SM distribution in black versus white youth may provide insight into the previously reported health disparities between these ethnicities. Therefore, we examined total and regional AT and SM in overweight black and white boys. The study sample included overweight black (n = 19) and white (n = 21) boys (11–18 yr, BMI ≥ 85th) whose body composition was evaluated using whole-body MRI. Despite similar age, Tanner stage, and BMI, black boys had significantly (P < .05) less visceral AT than white boys and more (P < .05) total and lower-body subcutaneous AT (SAT) in both absolute (kg) and relative (%) terms. There was a main effect (P < .05) of ethnicity on the relationship between total and regional AT, such that for a given amount of total body AT (kg), black boys had a greater (P < .05) lower-body SAT and less visceral AT than their white peers. For a given amount of total SM, black boys had more (P < .05) SM in the thigh. Compared with overweight white boys, overweight black boys have less visceral fat, more subcutaneous fat, and more thigh skeletal muscle

    Edmonton Obesity Staging System Prevalence and Association with Weight Loss in a Publicly Funded Referral-Based Obesity Clinic

    Get PDF
    Objectives. To determine the distribution of EOSS stages and differences in weight loss achieved according to EOSS stage, in patients attending a referral-based publically funded multisite weight management clinic. Subjects/Methods. 5,787 obese patients were categorized using EOSS staging using metabolic risk factors, medication use, and severity of doctor diagnosis of obesity-related physiological, functional, and psychological comorbidities from electronic patient files. Results. The prevalence of EOSS stages 0 (no risk factors or comorbidities), 1 (mild conditions), 2 (moderate conditions), and 3 (severe conditions) was 1.7%, 10.4%, 84.0%, and 3.9%, respectively. Prehypertension (63%), hypertension (76%), and knee replacement (33%) were the most common obesity-related comorbidities for stages 1, 2, and 3, respectively. In the models including age, sex, initial BMI, EOSS stage, and treatment time, lower EOSS stage and longer treatment times were independently associated with greater absolute (kg) and percentage of weight loss relative to initial body weight P<0.05. Conclusions. Patients attending this publicly funded, referral-based weight management clinic were more likely to be classified in the higher stages of EOSS. Patients in higher EOSS stages required longer treatment times to achieve similar weight outcomes as those in lower EOSS stages

    Estimating mangrove canopy height and above-ground biomass in the Everglades National Park with airborne LiDAR and TanDEM-X data

    Get PDF
    Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal mangrove forest of the Everglades National Park (ENP) provides an ideal location for studying these processes, as harmful human activities are minimal. We estimated mangrove canopy height and AGB in the ENP using Airborne LiDAR/Laser (ALS) and TanDEM-X (TDX) datasets acquired between 2011 and 2013. Analysis of both datasets revealed that mangrove canopy height can reach up to ~25 m and AGB can reach up to ~250 Mg·ha-1. In general, mangroves ranging from 9 m to 12 m in stature dominate the forest canopy. The comparison of ALS and TDX canopy height observations yielded an R2 = 0.85 and Root Mean Square Error (RMSE) = 1.96 m. Compared to a previous study based on data acquired during 2000-2004, our analysis shows an increase in mangrove stature and AGB, suggesting that ENP mangrove forests are continuing to accumulate biomass. Our results suggest that ENP mangrove forests have managed to recover from natural disturbances, such as HurricaneWilma

    Correlated multiplexity and connectivity of multiplex random networks

    Full text link
    Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a node's degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.Comment: Revised version, 12 pages, 6 figure

    Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments

    Get PDF
    Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation

    Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge

    Get PDF
    During the Late Pleistocene Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800 m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs
    corecore