60 research outputs found

    Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF

    Get PDF
    Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1Ξ± stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair

    Novel retinoic acid metabolism blocking agents have potent inhibitory activities on human breast cancer cells and tumour growth

    Get PDF
    Antitumour effects of retinoids are attributed to their influence on cell proliferation, differentiation, apoptosis and angiogenesis. In our effort to develop useful agents for breast cancer therapy, we evaluated the effects of four representative retinoic acid metabolism blocking agents (RAMBAs, VN/14-1, VN/50-1, VN/66-1 and VN/69-1) on growth inhibition of oestrogen receptor positive (ER +ve, MCF-7 and T-47D) and oestrogen receptor negative (ER βˆ’ve, MDA-MB-231) human breast cancer cells. Additionally, we investigated the biological effects/molecular mechanism(s) underlying their growth inhibitory properties as well as their antitumour efficacies against MCF-7 and MCF-7Ca tumour xenografts in nude mice. We also assessed the effect of combining VN/14-1 and all-trans-retinoic acid (ATRA) on MCF-7 tumuor xenografts. The ER +ve cell lines were more sensitive (IC50 values between 3.0 and 609 nM) to the RAMBAs than the ER βˆ’ve MDA-MB-231 cell line (IC50=5.6–24.0 μM). Retinoic acid metabolism blocking agents induced cell differentiation as determined by increased expression of cytokeratin 8/18 and oestrogen receptor-Ξ± (ER-Ξ±). Similar to ATRA, they also induced apoptosis via activation of caspase 9. Cell cycle analysis indicated that RAMBAs arrested cells in the G1 and G2/M phases and caused significant downregulation (>80%) of cyclin D1 protein. In vivo, the growth of MCF-7 mammary tumours was dose-dependently and significantly inhibited (92.6%, P<0.0005) by VN/14-1. The combination of VN/14-1 and ATRA also inhibited MCF-7 breast tumour growth in vivo (up to 120%) as compared with single agents (P<0.025). VN/14-1 was also very effective in preventing the formation of MCF-7Ca tumours and it significantly inhibited the growth of established MCF-7Ca tumours, being as effective as the clinically used aromatase inhibitors, anastrozole and letrozole. Decrease in cyclin D1 and upregulation of cytokeratins, Bad and Bax with VN/14-1 may be responsible for the efficacy of this compound in inhibiting breast cancer cell growth in vitro and in vivo. Our results suggest that our RAMBAs, especially VN/14-1 may be useful novel therapy for breast cancer

    fucoxanthin

    No full text

    Fucoxanthin

    No full text

    Suppressive Effect of Neoxanthin on the Differentiation of 3T3-L1 Adipose Cells

    No full text

    Quantitation of Carotenoids in Raw and Processed Fruits in Japan

    No full text
    • …
    corecore