4 research outputs found

    Effectiveness of strategies at reducing sand temperature to mitigate potential impacts from changes in environmental temperature on sea turtle reproductive output

    No full text
    Sea turtle reproduction is heavily influenced by environmental temperature. Thus, projected changes in global temperatures are predicted to alter their reproductive output (e.g. hatchling sex ratio and success). Management strategies to mitigate potential threats have been identified, but little is known about their effectiveness. We tested how effective sprinkling nests with water and shading is at reducing sand temperature. We compared sand temperature at average green turtle (Chelonia mydas) nest depth in a controlled environment with 5 different treatments: (1) shade (S), (2) shade with sprinkling during the day (SD) and (3) at night (SN), and (4) sprinkling during the day (ED) and (5) at night (EN) both exposed to sunlight. Not all strategies reduced the sand temperature; treatments with sprinkling during the day and shading on rainy days had warmer temperatures (0.83 ± 1.20 °C and 0.96 ± 0.41 °C respectively) than control treatments. Sprinkling during the night at an exposed and shaded setting were most effective at reducing sand temperature (with sand temperature on average 2.23 ± 0.66 °C and 1.43 ± 0.94 °C lower than control, respectively). These strategies could potentially be effective in counteracting increases in temperature at nesting grounds used by the northern Great Barrier Reef green turtle by 2030, where predictions are for an increase of 0.2–1.8 ± 0.01–0.37 °C. The effectiveness of strategies will likely vary regionally depending on the beach environment and setting used for the strategy

    The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: implications for hatchery management

    No full text
    Nest protection through egg relocation from natural nests into protected hatcheries is a common practice used at rookeries around the world to increase hatchling recruitment into sea turtle populations. However, rarely have the impacts of this practice on hatchling recruitment and quality been assessed. This study investigated the influences of the thermal nest environment of olive ridley turtles Lepidochelys olivacea on emergence success and quality of hatchlings of hatchery nests in Alas Purwo National Park, East Java, Indonesia (2009 and 2010 nesting seasons). Nest temperatures above 34 °C for at least 3 consecutive days during incubation in the hatchery resulted in decreases in emergence success and locomotor performance of hatchlings. The use of the hatchery is recommended due to extremely high predation rate of nests left on the beach; however, altering hatchery management practice by spacing nests one meter apart and providing shade should improve hatchery outcomes now and into the future
    corecore