22 research outputs found

    A Comparison of Consistent Discretizations for Elliptic Problems on Polyhedral Grids

    Get PDF
    In this work, we review a set of consistent discretizations for second-order elliptic equations, and compare and contrast them with respect to accuracy, monotonicity, and factors affecting their computational cost (degrees of freedom, sparsity, and condition numbers). Our comparisons include the linear and nonlinear TPFA method, multipoint flux-approximation (MPFA-O), mimetic methods, and virtual element methods. We focus on incompressible flow and study the effects of deformed cell geometries and anisotropic permeability.acceptedVersio

    Input and benchmarking data for flow simulations in discrete fracture networks

    Get PDF
    This article reports and describes the data related to the paper “Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations” (Fumagalli et al., 2019). The data provided include a set of geometrical input data of Discrete Fracture Networks (DFNs) and a set of simulation results. The geometrical data describe the geometry of fracture networks of increasing complexity. These data also include the geometry of a DFN extruded from a real fracture outcrop in Western Norway. Simulation results are obtained using several different numerical schemes and provide convergence history, plots over line and upscaled output quantities related to the various considered geometries

    Unified approach to discretization of flow in fractured porous media

    Get PDF
    In this paper, we introduce a mortar-based approach to discretizing flow in fractured porous media, which we term the mixed-dimensional flux coupling scheme. Our formulation is agnostic to the discretizations used to discretize the fluid flow equations in the porous medium and in the fractures, and as such it represents a unified approach to integrated fractured geometries into any existing discretization framework. In particular, several existing discretization approaches for fractured porous media can be seen as special instances of the approach proposed herein. We provide an abstract stability theory for our approach, which provides explicit guidance into the grids used to discretize the fractures and the porous medium, as dependent on discretization methods chosen for the respective domains. The theoretical results are sustained by numerical examples, wherein we utilize our framework to simulate flow in 2D and 3D fractured media using control volume methods (both two- and multi-point flux), Lagrangian finite element methods, mixed finite element methods, and virtual element methods. As expected, regardless of the ambient methods chosen, our approach leads to stable and convergent discretizations for the fractured problems considered, within the limits of the discretization schemes

    Implementation of mixed-dimensional models for flow in fractured porous media

    No full text
    Models that involve coupled dynamics in a mixed-dimensional geometry are of increasing interest in several applications. Here, we describe the development of a simulation model for flow in fractured porous media, where the fractures and their intersections form a hierarchy of interacting subdomains. We discuss the implementation of a simulation framework, with an emphasis on reuse of existing discretization tools for mono-dimensional problems. The key ingredients are the representation of the mixed-dimensional geometry as a graph, which allows for convenient discretization and data storage, and a non-intrusive coupling of dimensions via boundary conditions and source terms. This approach is applicable for a wide class of mixed-dimensional problems. We show simulation results for a flow problem in a three-dimensional fracture geometry, applying both finite volume and virtual finite element discretizations
    corecore