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Abstract In this work, we review a set of consistent discretizations for second-
order elliptic equations, and compare and contrast them with respect to accuracy,5

monotonicity, and factors affecting their computational cost (degrees of freedom,
sparsity, and condition numbers). Our comparisons include the linear and nonlinear
TPFA method, multipoint flux-approximation (MPFA-O), mimetic methods, and
virtual element methods. We focus on incompressible flow and study the effects of
deformed cell geometries and anisotropic permeability.10
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1 Introduction

Models of petroleum reservoirs with complex geology tend to have grids with15

general hexahedral or polyhedral cell geometries and tensor permeabilities. The
standard two-point flux-approximation (TPFA) method is only consistent for K-
orthogonal grids in which the principal directions of the permeability tensor align
with vectors joining cell and face centroids1. Simulation models are often the result
of upscaling [8], which tends to generate nonzero off-diagonal permeabilities, and20

as a rule, simulation grids will not be K-orthogonal, at least in some parts of the
reservoir. The TPFA method is then not consistent and convergent, and will intro-
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1 Other choices of primary pressure points are also possible, e.g., circumcenter for triangular grids.
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duce grid-orientation effects that adversely affect the accuracy. Much research has
therefore been devoted to develop consistent methods on non-K-orthogonal grids.

The multipoint flux-approximation (MPFA) scheme [1] accounts for transversal25

pressure variations by introducing auxiliary pressure points at the cell interfaces,
which are coupled inside local interaction regions that together form a dual grid.
MPFA methods retain the same low number of unknowns as TPFA, but have a larger
stencil and can be somewhat cumbersome to implement for complex grids.

Mimetic methods [4] also introduce auxiliary pressure points to ensure consis-30

tency, which are kept as primary unknowns. An inherent free stabilization param-
eter gives a variety of specific schemes that reduce to other known discretizations
on simple grids [14]. The main drawbacks of mimetic methods are that they use
a mixed-hybrid formulation and involve significantly more unknowns than cell-
centered methods. Mimetic methods have later been developed into virtual ele-35

ment methods (VEM) [21, 2], which constitute a uniform and flexible framework
for higher-order discretizations on general polyhedral cells. MPFA, mimetic, and
VEM are only conditionally monotone and may introduce nonphysical pressure os-
cillations. The nonlinear two-point scheme (NTPFA) [16, 18, 19] uses pressure-
dependent transmissibilities to define a consistent and monotone method, but re-40

quires the solution of a nonlinear system of equations.
In this work, we compare the performance of these methods applied to the type of

grid models encountered in real reservoir simulation using the open-source MRST
software [13]. Our test cases involve deformed cell geometries and anisotropic per-
meabilities. The paper can therefore be seen as an update of [14] and [11]. Further45

comparisons can be found in, e.g., [7].

2 Consistent discretizations on polyhedral grids

For simplicity, we consider incompressible single-phase flow,

∇ ·v = q, v =−K∇p, x ∈Ω ⊂ Rd . (1)

Discretized by a mesh consisting of nc polygonal or polyhedral cells Ωi with con-
stant permeability Ki on each, the the control-volume formulation of (1) reads∫

∂Ωi

v ·nds =
∫

Ωi

qdx = qi. (2)

Methods differ in the way they approximate the flux across intercell faces. Consider
two neighboring cells as in Figure 1, with common interface Γi j. The normal vector
ni, j points from Ωi to Ω j, and similarly, n j,i = −ni, j. For the flux vi, j across Γi j in50

the direction of ni, j, local conservation of mass requires vi, j =−v j,i.
Discrete conservation of mass is a natural requirement, and also necessary to

avoid nonphysical solutions in multiphase simulations; consistency is needed for
a correct solution, typically used together with coercivity to prove convergence
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Fig. 1 Two neighboring cells and geometric
quantities used to discretize the flux vi, j .

Fig. 2 The NTPFA vector li, j = Kini, j .

[4, 19]; whereas a monotonicity is desirable to produce physically meaningful so-55

lutions with properties inherent to elliptic problems [9]. For linear discretizations, a
sufficient condition for monotonicity is that the discretization produces a so-called
M-matrix. Lack of coercivity may nonetheless lead to convergence breakdown, even
for consistent methods [5]. We present a set of consistent discretization methods for
(1), and discuss some of these properties; see Figure 3 for a schematic comparison.60

Two-point flux-approximation With an auxiliary pressure point πi, j at the cen-
troid of Γi j, we can use a one-sided finite-difference to approximate the pressure
gradient in Darcy’s law,

vi, j =
∫

Γi, j

v ·ni, j ds≈ |Γi, j|
cT

i, jKini, j

|ci, j|2
(pi−πi, j) = Ti, j(pi−πi, j). (3)

Here, Ki is the constant value of K on Ωi, and Ti, j is referred to as the one-sided
transmissibility. Imposing flux continuity across interfaces, vi j = vi, j = −v j,i, and
continuity of face pressures, πi j = πi, j = π j,i, gives the system

∑
nc
j=1 Ti j(pi− p j) = qi, Ti j =

(
T−1

i, j +T−1
j,i
)−1

, i = 1, . . . ,nc, (4)

where Ti j is the transmissibility. If these cells do not share an interface, the trans-
missibility Ti j is zero. This yields an M-matrix, which guarantees that the method
is monotone. However, the TPFA method is only consistent for K-orthogonal grids,
for which a sufficient condition is that Kini, j is parallel to ci, j for all cells.

Multipoint flux approximation For a consistent method, one must account for65

pressure gradients parallel to cell faces. MFPA-O constructs an interaction region
around each grid node and defines linear basis functions for pressure inside, with
pressure continuity at face centroids and flux continuity across face patches. Conti-
nuity and mass conservation gives a consistent method, with unknown cell pressures
and face pressures along the outer boundary. This gives a denser linear system than70

for TPFA. However, the method is only monotone under specific conditions, and
we can not expect it to be monotone for very skewed grid cells and/or severely
anisotropic permeabilities [9]. See, e.g., [1, 6] for more details of MPFA schemes.
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Fig. 3 Schematic overview of key properties of the methods compared in this paper.

Nonlinear two-point flux approximation The NTPFA method [16, 18, 20] also
uses additional points to estimate fluxes,

vi, j = Ti, j(p)pi−Tj,i(p)p j.

The transmissibilities Ti, j are positive functions that depend on one or more pres-
sure values, giving a nonlinear method. To derive such a scheme, we consider the75

vector li, j = Kini, j, (see Figure 2). Whereas TPFA approximates li, j using only vec-
tor components normal to the interface, NTPFA uses a decomposition onto a basis
of d vectors in d spatial dimensions. This is used to obtain consistent discretiza-
tions of vi, j and v j,i, with vi j taken as a convex combination of these. The result is a
consistent and monotone two-point flux approximation, where the transmissibilities80

depend on pressure values not included in the two-point stencil.

Mimetic finite differences TPFA and MPFA-O can be seen as special cases of a
wider family of mass-conservative schemes written in so-called hybrid formulation

vi = Ti(ei pi−πi), in Ωi.

Here, vi is the vector of fluxes across the n f cell faces, ei = (1, . . . ,1)T ∈ Rn f , πi
is the vector of face pressures, and Ti is a matrix of one-sided transmissibilities.
Discrete mass conservation and flux continuity is imposed through separate equa-
tions, see e.g., [14] for details. This formulation can be interpreted as a first-order85

mimetic finite difference method, where different choices of the inner product matri-
ces Mi = T−1

i lead to different special cases (e.g., TPFA or MPFA-O, see [15, 14]).

The virtual element method In their present formulation, neither of the meth-
ods mentioned so far are easily extended to higher order. By using moments of the90

solution as degrees of freedom, it is possible to obtain a unified, higher-order frame-
work for general polyhedral grids called the virtual element method (VEM) [21, 2].
Herein, we use this method as an example of a finite element-type discretization for
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Table 1 Key characteristics of the discrete systems for the monotonicity example: number of pri-
mary unknowns (dof), number of nonzero entries in discretization matrix (nnz), average number
of nonzero entries per unknown (ratio=nnz/dof), and condition number (cond).

points for unknowns calculation dof nnz ratio cond
TPFA cells 51· 51 2601 12801 4.92 1.45e+03
NTPFA cells 51· 51 2601 17208 6.62 2.83e+03
MPFA cells + outer faces 512 +2 ·4 ·51 3009 23209 7.71 1.69e+03
MFD faces 2 ·51 ·52−4 ·51 5100 35096 6.88 7.01e+03
VEM1 vertices 52 ·52 2704 22704 8.40 5.08e+04
VEM2 cells + faces + vertices 522 +512 +2 ·51 ·52 10609 162817 15.35 1.07e+06

polyhedral grids. This formulation is not locally conservative, and the result must be
postprocessed in order to be used in transport simulations. Alternatively, it is possi-95

ble to use a mixed formulation [3]. We will denote first- and second-order VEM by
VEM1 and VEM2, respectively.

3 Numerical experiments

All discretizations are implemented in MRST [13]. Full codes for the following two
examples are available online2, and [10] gives a more elaborate description.100

Monotonicity The fundamental elliptic maximum principle of (1) implies that if
there is a single source within the domain, the pressure will decrease monotoni-
cally towards the boundary. To assess deviations from monotonicity, we consider
anisotropic permeability Kx/Ky = 500, rotated by an angle π/8, and three differ-
ent meshes: 51× 51 Cartesian, honeycombed PEBI, and a rotated Cartesian mesh105

aligned with the principal axes of K. We place a point source at the origin, and im-
pose zero pressure boundary conditions. Figure 4 reports approximate solutions. All
consistent methods, except NTPFA, give oscillations along the minor principal axis
of K. Figure 5 reports fraction and magnitude of negative pressures values.

NTPFA and TPFA are monotone by construction and have no cells with negative110

pressure. VEM1 has the highest fraction of negative pressures, but the magnitude
is lower than for MFD and MPFA. MPFA has the highest magnitude of negative
pressures. VEM2 yields far better results in terms of physically meaningful pressure
fields, even though the method is not guaranteed to be monotone.

Table 1 reports characteristics of the linear systems on the Cartesian mesh. MPFA115

has almost twice as many nonzero entries per unknown as TPFA, but similar con-
dition number. NTPFA has a sparsity pattern similar to MPFA. MFD is less dense
than for MFPA, but has three times higher condition number. VEM1 has fewer un-
knowns than MPFA, denser stencil, and condition number O(10) larger than the
other. VEM2’s stencil is more than three times denser than TPFA, with O(103)120

larger condition number. Results are similar on the rotated mesh. On the PEBI mesh,
MFD and VEM are significantly denser, in particular MFD and VEM2, because the
PEBI mesh has 1.5 as many faces as the Cartesian.

2 git@bitbucket.org:strene/compare-elliptic.git
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Fig. 4 Pressure solutions for the monotonicity test; white cells indicate negative pressure.

0 5 10 15 20 25 30 35 40 45

MFD

MPFA

NTPFA

TPFA

VEM1

Fraction of cells with negative pressure (%)

Magnitude of negative pressure

0 1 2 3 4 5 6 7

MFD

MPFA

NTPFA

TPFA

VEM2

VEM1

VEM2

Fig. 5 Fraction and magnitude of negative pressure values for the solutions in the monotonicity
test on the Cartesian mesh. Magnitude of negative pressure = 100∑pi<0 |pi|

/
∑i |pi|.

Fig. 6 Near-well case: K
is log-normal, Kx/Ky = 3,
rotated π/6 in the xy-plane.
Fractures in black, topmost
well-cell in red at the fracture
intersection.

Near-well simulation Grid blocks in real field models usually represent upscaled
volumes containing significant permeability variation. We consider a near-well re-125

gion with a vertical well, modelled as a source injecting 1 PV over 0.1 yrs. Two
fractures intersect the well, modelled as volumetric objects with a much higher per-
meability (Figure 6). Constant pressure is imposed the vertical sides, with no-flow
top/bottom. All the consistent schemes predict similar outflow through the four ver-
tical sides, with VEM1 deviating most (7%) from the other four. TPFA differs with130

as much as 20%, which is reason for serious concern, if used for upscaling.
Table 2 confirms that differences in algebraic complexity are accentuated com-

pared to the 2D cases. VEM is very dense, with VEM2 having a ratio of 82.7.
All methods have significantly higher condition numbers, with MFD and VEM be-
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Table 2 Key characteristics of the discrete systems for the near-well example.
dof nnz ratio cond

TPFA 2465 19809 8.04 1.11e+04
NTPFA 2465 33608 13.63 3.26e+05
MPFA 8507 98579 11.59 6.74e+04
MFD 9658 130438 13.51 2.94e+09
VEM1 5274 170618 32.35 2.22e+11
VEM2 30173 2495409 82.70 1.44e+12

TPFA

Cell

Face

Node

Edge

Coupling

NTPFA MPFA

MFD VEM1 VEM2

Fig. 7 Sparsity patterns from the near-well example, with different colors for each type of dof.

ing more ill-conditioned than the other methods. Figure 7 reports sparsity patterns.135

Since TPFA is not consistent on this grid, the converged NTPFA discretization is
similar to that of MPFA instead of TPFA. VEM2 has a face-pressure block equal to
MFD, and a node-pressure block equal to that of VEM1.

4 Closing remarks

The novelty herein is that we compare a large set of discretizations on the same140

problem, with access to complete source codes. Our experiments here and in [11]
do not clearly point to one preferred method that is significantly better than the oth-
ers. TPFA is inconsistent and has grid orientation effects, but is monotone and gives
sparse matrices with low condition numbers. Consistent methods are convergent and
reduce grid orientation effects, but have monotonicity issues and give denser and145

more ill-conditioned linear systems, particularly for VEM. NTPFA is monotone but
requires the solution of a nonlinear system and is, in our experience, significantly
less robust than e.g., mimetic methods. Our best advice is to compute representative
flow solutions with more than one consistent scheme and use the results to estimate
the level of error that may arise because of anisotropic permeability and skew and ir-150

regular cell geometries. For multiphase simulations, one should assess the quality of
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the resulting flow fields using e.g., flow diagnostics [13]: sweep, drainage, and well-
pair regions, well-allocation factors, time-of-flight, and residence time distributions.
In addition, one should also investigate the number and size of the connected com-
ponents in the computed flux fields, as these will affect convergence behavior of155

nonlinear solvers used in each time step of a multiphase simulation [17, 12].
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