9 research outputs found

    Whistler Wave Observations by \textit{Parker Solar Probe} During Encounter 11: Counter-Propagating Whistlers Collocated with Magnetic Field Inhomogeneities and their Application to Electric Field Measurement Calibration

    Full text link
    Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.050.05 -- 0.20fce0.20 f_\mathrm{ce} (tens of Hz up to ∼300{\sim}300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow the waves experience significant Doppler down-shift and up-shift {of wave frequency} in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 22~nT, where such values represent up to 10%10\% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves

    Whistler Wave Observations by Parker Solar Probe During Encounter 1: Counter-propagating Whistlers Collocated with Magnetic Field Inhomogeneities and their Application to Electric Field Measurement Calibration

    No full text
    Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.05 and 0.20 f _ce (tens of hertz up to ∼300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow, the waves experience significant Doppler downshift and upshift of wave frequency in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 2 nT, where such values represent up to 10% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves

    Reconstruction of Polarization Properties of Whistler Waves From Two Magnetic and Two Electric Field Components: Application to Parker Solar Probe Measurements

    No full text
    International audienceThe search-coil magnetometer (SCM) aboard Parker Solar Probe (PSP) measures the 3 Hz to 1 MHz magnetic field fluctuations. During Encounter 1, the SCM operated as expected; however, in March 2019, technical issues limited subsequent encounters to two components for frequencies below 1 kHz. Detrimentally, most whistler waves are observed in the affected frequency band where established techniques cannot extract the wave polarization properties under these conditions. Fortunately, the Electric Field Instrument aboard PSP measures two electric field components and covers the affected bandwidth. We propose a technique using the available electromagnetic fields to reconstruct the missing components by neglecting the electric field parallel to the background magnetic field. This technique is applicable with the assumptions of (a) low-frequency whistlers in the plasma frame relative to the electron cyclotron frequency; (b) a small propagation angle with respect to the background magnetic field; and (c) a large wave phase speed relative to the cross-field solar wind velocity. Critically, the method cannot be applied if the background magnetic field is aligned with the affected SCM coil. We have validated our method using burst mode measurements made before March 2019. The reconstruction conditions are satisfied for 80% of the burst mode whistlers detected during Encounter 1. We apply the method to determine the polarization of a whistler event observed after March 2019 during Encounter 2. Our novel method is an encouraging step toward analyzing whistler properties in affected encounters and improving our understanding of wave-particle interactions in the young solar wind

    Thermal Analysis

    No full text
    corecore