974 research outputs found

    Binary Population Synthesis: Methods, Normalization, and Surprises

    Get PDF
    In this paper we present a brief overview of population synthesis methods with a discussion of their main advantages and disadvantages. In the second part, we present some recent results from synthesis models of close binary compact objects with emphasis on the predicted rates, their uncertainties, and the model input parameters the rates are most sensitive to. We also report on a new evolutionary path leading to the formation of close double neutron stars (NS), with the unique characteristic that none of the two NS ever had the chance to be recycled by accretion. Their formation rates turn out to be comparable to or maybe even higher than those of recycled NS-NS binaries (like the ones observed), but their detection probability as binary pulsars is much smaller because of their short lifetimes. We discuss the implications of such a population for gravitational-wave detection of NS-NS inspiral events, and possibly for gamma-ray bursts and their host galaxies.Comment: 15 pages, 1 figure, to appear in the proceedings ``The influence of binaries on stellar population studies'', Brussels, August 2000 (Kluwer Academic Publishers), ed. D.Vanbevere

    Merger Sites of Double Neutron Stars and their Host Galaxies

    Get PDF
    Using the StarTrack population synthesis code we analyze the formation channels possibly available to double neutron star binaries and find that they can be richer than previously thought. We identify a group of short lived, tight binaries, which do not live long enough to escape their host galaxies, despite their large center-of-mass velocities. We present our most recent results on all possible evolutionary paths leading to the formation of double neutron stars, calculate their coalescence rates, and also revisit the question of the distribution of merger sites around host galaxies. For a wide variety of binary evolution models and galaxy potentials, we find that most of neutron star mergers take place within galaxies. Our results stem from allowing for radial and common envelope evolution of helium-rich stars (testable in the future with detailed stellar-structure and hydrodynamic calculations) and indicate that double neutron star binaries may not be excluded as Gamma-Ray Burst (GRB) progenitors solely on the basis of their spatial distribution around host galaxies. We also find, in contrast to Bethe & Brown (1998), that in a significant fraction of common envelope (CE) phases neutron stars do not accrete enough material to become black holes, and thus the channels involving CEs are still open for the formation of double neutron stars.Comment: 12 pages, 3 figures, ApJ Letters 2002, accepte

    Changes in Exercise Data Management

    Get PDF
    The suite of exercise hardware aboard the International Space Station (ISS) generates an immense amount of data. The data collected from the treadmill, cycle ergometer, and resistance strength training hardware are basic exercise parameters (time, heart rate, speed, load, etc.). The raw data are post processed in the laboratory and more detailed parameters are calculated from each exercise data file. Updates have recently been made to how this valuable data are stored, adding an additional level of data security, increasing data accessibility, and resulting in overall increased efficiency of medical report delivery. Questions regarding exercise performance or how exercise may influence other variables of crew health frequently arise within the crew health care community. Inquiries over the health of the exercise hardware often need quick analysis and response to ensure the exercise system is operable on a continuous basis. Consolidating all of the exercise system data in a single repository enables a quick response to both the medical and engineering communities. A SQL server database is currently in use, and provides a secure location for all of the exercise data starting at ISS Expedition 1 - current day. The database has been structured to update derived metrics automatically, making analysis and reporting available within minutes of dropping the inflight data it into the database. Commercial tools were evaluated to help aggregate and visualize data from the SQL database. The Tableau software provides manageable interface, which has improved the laboratory's output time of crew reports by 67%. Expansion of the SQL database to be inclusive of additional medical requirement metrics, addition of 'app-like' tools for mobile visualization, and collaborative use (e.g. operational support teams, research groups, and International Partners) of the data system is currently being explored

    The Evolution of Exercise Hardware on ISS: Past, Present, and Future

    Get PDF
    During 16 years in low-Earth orbit, the suite of exercise hardware aboard the International Space Station (ISS) has matured significantly. Today, the countermeasure system supports an array of physical-training protocols and serves as an extensive research platform. Future hardware designs are required to have smaller operational envelopes and must also mitigate known physiologic issues observed in long-duration spaceflight. Taking lessons learned from the long history of space exercise will be important to successful development and implementation of future, compact exercise hardware. The evolution of exercise hardware as deployed on the ISS has implications for future exercise hardware and operations. Key lessons learned from the early days of ISS have helped to: 1. Enhance hardware performance (increased speed and loads). 2. Mature software interfaces. 3. Compare inflight exercise workloads to pre-, in-, and post-flight musculoskeletal and aerobic conditions. 4. Improve exercise comfort. 5. Develop complimentary hardware for research and operations. Current ISS exercise hardware includes both custom and commercial-off-the-shelf (COTS) hardware. Benefits and challenges to this approach have prepared engineering teams to take a hybrid approach when designing and implementing future exercise hardware. Significant effort has gone into consideration of hardware instrumentation and wearable devices that provide important data to monitor crew health and performance

    The Probability Distribution of Binary Pulsar Coalescence Rate Estimates. II. Neutron Star-White Dwarf Binaries

    Full text link
    We consider the statistics of pulsar binaries with white dwarf companions (NS-WD). Using the statistical analysis method developed by Kim et al. (2003) we calculate the Galactic coalescence rate of NS-WD binaries due to gravitational-wave emission. We find that the most likely values for the total Galactic coalescence rate (R_tot) of NS-WD binaries lie in the range 0.2--10 per Myr depending on different assumed pulsar population models. For our reference model, we obtain R_tot=4.11_(-2.56)^(+5.25) per Myr at a 68% statistical confidence level. These rate estimates are not corrected for pulsar beaming and as such they are found to be about a factor of 20 smaller than the Galactic coalescence rate estimates for double neutron star systems. Based on our rate estimates, we calculate the gravitational-wave background due to coalescing NS-WD binaries out to extragalactic distances within the frequency band of the Laser Interferometer Space Antenna. We find the contribution from NS-WD binaries to the gravitational-wave background to be negligible.Comment: 20 pages, 2 figures, 2 tables, Accepted for publication in Ap

    Bluetooth Heart Rate Monitors For Spaceflight

    Get PDF
    Heart rate monitoring is required for crewmembers during exercise aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data are required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health aboard the ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) were worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_HRM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the 2 data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. RESULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6% error), followed by CS4 (3.3% error), CS3 (6.4% error), and CS2 (9.2% error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, but unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to obtain the best quality data. CS2 will be used in an ISS Bluetooth validation study, because it simultaneously transmits magnetic pulse that is integrated with existing exercise hardware on ISS. The simultaneous data streams allow for beat-to-beat comparison between the current ISS standard and CS2. Upon Bluetooth validation aboard ISS, the research team will down select a new BT_HRM for operational use

    Bluetooth(Registered Trademark) Heart Rate Monitors for Spaceflight

    Get PDF
    Heart rate monitoring is required during exercise for crewmembers aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data is required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health on board ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) was worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_RHM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the two data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. REULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6%error), followed by CS4 (3.3%error), CS3 (6.4%error), and CS2 (9.2%error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to get the best quality data. CS2 will be used in an ISS Bluetooth validation study, because it simultaneously transmits Magnetic Pulse which is integrated with existing exercise hardware on ISS. The simultaneous data streams allow for beat to beat comparison between the current ISS standard and CS2.Upon Bluetooth(Registered Trademark) validation aboard ISS, down select of a new BT_HRM for operational use will be made

    The Role of Helium Stars in the Formation of Double Neutron Stars

    Get PDF
    We have calculated the evolution of 60 model binary systems consisting of helium stars in the mass range of M_He= 2.5-6Msun with a 1.4Msun neutron star companion to investigate the formation of double neutron star systems.Orbital periods ranging from 0.09 to 2 days are considered, corresponding to Roche lobe overflow starting from the helium main sequence to after the ignition of carbon burning in the core. We have also examined the evolution into a common envelope phase via secular instability, delayed dynamical instability, and the consequence of matter filling the neutron star's Roche lobe. The survival of some close He-star neutron-star binaries through the last mass transfer episode (either dynamically stable or unstable mass transfer phase) leads to the formation of extremely short-period double neutron star systems (with P<~0.1days). In addition, we find that systems throughout the entire calculated mass range can evolve into a common envelope phase, depending on the orbital period at the onset of mass transfer. The critical orbital period below which common envelope evolution occurs generally increases with M_He. In addition, a common envelope phase may occur during a short time for systems characterized by orbital periods of 0.1-0.5 days at low He-star masses (~ 2.6-3.3Msun). The existence of a short-period population of double neutron stars increases the predicted detection rate of inspiral events by ground-based gravitational-wave detectors and impacts their merger location in host galaxies and their possible role as gamma-ray burst progenitors. We use a set of population synthesis calculations and investigate the implications of the mass-transfer results for the orbital properties of DNS populations.Comment: 30 pages, Latex (AASTeX), 1 table, 8 figures. To appear in ApJ, v592 n1 July 20, 200
    corecore