97 research outputs found

    Measurement Of The Complex Nonlinear Refractive-Index Of Single-Crystal P-Toluene Sulfonate At 1064-Nm

    Get PDF
    Z-scan at 1064 nm was used with single, 35 ps pulses to measure the nonlinear refraction and absorption in single crystal PTS (p-toluene sulfonate). Detailed analysis of the Z-scan data based on DELTAn = n2I + n3I2 and DELTAalpha = alpha2I + alpha3I2 yielded n2 = 5(+/-1) X 10(-12) cm2/W, alpha2 = 100(+/-20) cm/GW, n3 = 5(+/-1)X 10(-21) cm4/W2 and alpha3 = - 5 (+/- 1) cm3/GW.2 The resulting two photon figure of merit T for PTS is marginal for high throughput, all-optical waveguide switching at 1064 nm

    Lattice Distortion and Magnetism of 3d-t2gt_{2g} Perovskite Oxides

    Full text link
    Several puzzling aspects of interplay of the experimental lattice distortion and the the magnetic properties of four narrow t2gt_{2g}-band perovskite oxides (YTiO3_3, LaTiO3_3, YVO3_3, and LaVO3_3) are clarified using results of first-principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamiltonian for the isolated t2gt_{2g} bands using newly developed downfolding method for the kinetic-energy part and a hybrid approach, based on the combination of the random-phase approximation and the constraint local-density approximation, for the screened Coulomb interaction part. Then, we solve the obtained Hamiltonian using a number of techniques, including the mean-field Hartree-Fock (HF) approximation, the second-order perturbation theory for the correlation energy, and a variational superexchange theory. Even though the crystal-field splitting is not particularly large to quench the orbital degrees of freedom, the crystal distortion imposes a severe constraint on the form of the possible orbital states, which favor the formation of the experimentally observed magnetic structures in YTiO3_3, YVO_, and LaVO3_3 even at the HF level. Beyond the HF approximation, the correlations effects systematically improve the agreement with the experimental data. Using the same type of approximations we could not reproduce the correct magnetic ground state of LaTiO3_3. However, we expect that the situation may change by systematically improving the level of approximations for dealing with the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available via e-mai

    Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic

    Get PDF
    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is insoluble in water but soluble in alcohols and can be processed into very good optical quality thin films by solution casting or spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants replacing CTMA in the DNA complex and based on benzalkonium chloride (BA) and didecyldimethylammonium chloride (DDCA) on their optical properties. Particularly, we were interested in all optical switching and light generation in amplified spontaneous emission process in these materials

    Local-Ansatz Approach with Momentum Dependent Variational Parameters to Correlated Electron Systems

    Full text link
    A new wavefunction which improves the Gutzwiller-type local ansatz method has been proposed to describe the correlated electron system. The ground-state energy, double occupation number, momentum distribution function, and quasiparticle weight have been calculated for the half-filled band Hubbard model in infinite dimensions. It is shown that the new wavefunction improves the local-ansatz approach (LA) proposed by Stollhoff and Fulde. Especially, calculated momentum distribution functions show a reasonable momentum dependence. The result qualitatively differs from those obtained by the LA and the Gutzwiller wavefunction. Furthermore, the present approach combined with the projection operator method CPA is shown to describe quantitatively the excitation spectra in the insulator regime as well as the critical Coulomb interactions for a gap formation in infinite dimensions.Comment: To be published in Phys. Soc. Jpn. 77 No.11 (2008

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    Foreword

    No full text

    Second order nonlinear optical properties of poled films containing azobenzenes tailored with azulen-1-yl-pyridine

    No full text
    Azo compounds, which are highly versatile molecules, have attracted a considerable attention both for their fundamental properties and for practical applications, especially in photonics. The conjugated azo-aromatic systems containing 4-(R-azulen-1-yl)-2,6-dimethyl-pyridine were investigated for their nonlinear optical properties. These molecules were embedded in polymethyl methacrylate (PMMA) matrix, and the obtained guest-host systems were processed into good optical quality thin film by spin coating technique. The dipolar moments of dissolved in PMMA molecules were oriented by applying a high DC electric field at a temperature close to the polymer glass transition temperature. The second - order nonlinear optical (NLO) properties of poled films were studied by the optical second harmonic generation technique (SHG). The poling kinetics, studied by in situ SHG as well as the measured second-order NLO susceptibilities of poled films are reported and discussed
    corecore