142,965 research outputs found
Detection of Striped Superconductors Using Magnetic Field Modulated Josephson Effect
In a very interesting recent Letter\cite{berg}, the authors suggested that a
novel form of superconducting state is realized in LaBaCuO with
close to 1/8. This suggestion was based on experiments\cite{li} on this
compound which found predominantly two-dimensional (2D) characters of the
superconducting state, with extremely weak interplane coupling. Later this
specific form of superconducting state was termed striped
superconductors\cite{berg08}. The purpose of this note is to point out that the
suggested form\cite{berg} of the superconducting order parameter can be
detected directly using magnetic field modulated Josephson effect.Comment: Expanded version as appeared in prin
Spin mapping, phase diagram, and collective modes in double layer quantum Hall systems at
An exact spin mapping is identified to simplify the recently proposed
hard-core boson description (Demler and Das Sarma, Phys. Rev. Lett., to be
published) of the bilayer quantum Hall system at filling factor 2. The
effective spin model describes an easy-plane ferromagnet subject to an external
Zeeman field. The phase diagram of this effective model is determined exactly
and found to agree with the approximate calculation of Demler and Das Sarma,
while the Goldstone-mode spectrum, order parameter stiffness and
Kosterlitz-Thouless temperature in the canted antiferromagnetic phase are
computed approximately.Comment: 4 pages with 2 figures include
Theoretical study of polar and global ozone changes using a coupled radiative-dynamical 2-D model
An existing 2-D model has recently been updated to incorporate ozone-temperature feedbacks with more comprehensive radiative transfer calculations and more detailed temperature data input. Researchers address the following issues: (1) given the observed temperature changes for the past eight years, quantitatively how much ozone change can be produced by the dynamical effect of the temperature change over the Arctic and Antarctic; (2) how much of the reported change in globally averaged ozone can be accounted for by temperature changes; (3) the role of the diabatic circulation changes in the lower stratosphere in determining the timing of the polar spring maximum and minimum; and (4) the role of the seasonal change in the diabatic circulation in causing the fall minimum over the Arctic and Antarctic
The Fermi Bubbles: Gamma-ray, Microwave, and Polarization Signatures of Leptonic AGN Jets
The origin of the Fermi bubbles and the microwave haze is yet to be
determined. To disentangle different models requires detailed comparisons
between theoretical predictions and multi-wavelength observations. Our previous
simulations have demonstrated that the primary features of the Fermi bubbles
could be successfully reproduced by recent jet activity from the central active
galactic nucleus (AGN). In this work, we generate gamma-ray and microwave maps
and spectra based on the simulated properties of cosmic rays (CRs) and magnetic
fields in order to examine whether the observed bubble and haze emission could
be explained by leptons contained in the AGN jets. We also investigate the
model predictions of the polarization properties of the Fermi bubbles. We find
that: (1) The same population of leptons can simultaneously explain the bubble
and haze emission given that the magnetic fields within the bubbles are very
close to the exponentially distributed ambient field, which can be explained by
mixing in of the ambient field followed by turbulent field amplification; (2)
The centrally peaked microwave profile suggests CR replenishment, which is
consistent with the presence of a more recent second jet event; (3) The bubble
interior exhibits a high degree of polarization because of ordered radial
magnetic field lines stretched by elongated vortices behind the shocks;
highly-polarized signals could also be observed inside the draping layer; (4)
Enhancement of rotation measures could exist within the shock-compressed layer
because of increased gas density and more amplified and ordered magnetic
fields. We discuss the possibility that the deficient haze emission at b<-35
degrees is due to the suppression of magnetic fields, which is consistent with
the existence of lower-energy CRs causing the polarized emission at 2.3 GHz.
Possible AGN jet composition in the leptonic scenario is also discussed.Comment: 15 pages, 9 figures, matched with MNRAS published versio
Diagrammatic Quantum Monte Carlo solution of the two-dimensional Cooperon-Fermion model
We investigate the two-dimensional cooperon-fermion model in the correlated
regime with a new continuous-time diagrammatic determinant quantum Monte Carlo
(DDQMC) algorithm. We estimate the transition temperature , examine the
effectively reduced band gap and cooperon mass, and find that delocalization of
the cooperons enhances the diamagnetism. When applied to diamagnetism of the
pseudogap phase in high- cuprates, we obtain results in a qualitative
agreement with recent torque magnetization measurements.Comment: 8 pages, 11 figure
Comments on Baryon Melting in Quark Gluon Plasma with Gluon Condensation
We consider a black hole solution with a non-trivial dilaton from IIB super
gravity which is expected to describe a strongly coupled hot gauge plasma with
non-vanishing gluon condensation present. We construct a rotating and moving
baryon to probe the screening and phases of the plasma. Melting of the baryons
in hot plasma in this background had been studied previously, however, we show
that baryons melt much lower temperature than has been suggested previously.Comment: 3 figures, 12 page
Effect of in-plane magnetic field on magnetic phase transitions in nu=2 bilayer quantum Hall systems
By using the effective bosonic spin theory, which is recently proposed by
Demler and Das Sarma [ Phys. Rev. Lett. 82, 3895 (1999) ], we analyze the
effect of an external in-plane magnetic field on the magnetic phase transitions
of the bilayer quantum Hall system at filling factor nu=2. It is found that the
quantum phase diagram is modified by the in-plane magnetic field. Therefore,
quantum phase transitions can be induced simply by tilting the magnetic field.
The general behavior of the critical tilted angle for different layer
separations and interlayer tunneling amplitudes is shown. We find that the
critical tilted angles being calculated agree very well with the reported
values. Moreover, a universal critical exponent for the transition from the
canted antiferromagnetic phase to the ferromagnetic phase is found to be equal
to 1/2 within the present effective theory.Comment: RevTeX, 4 pages with 3 EPS figures include
- …