763 research outputs found
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
Gapless finite- theory of collective modes of a trapped gas
We present predictions for the frequencies of collective modes of trapped
Bose-condensed Rb atoms at finite temperature. Our treatment includes a
self-consistent treatment of the mean-field from finite- excitations and the
anomolous average. This is the first gapless calculation of this type for a
trapped Bose-Einstein condensed gas. The corrections quantitatively account for
the downward shift in the excitation frequencies observed in recent
experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure
Reply to Oliver W Quarrell et al.:"Letter in response to Tibben et al., Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners"
Genetics of disease, diagnosis and treatmen
Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners
Amongst the main reasons people at risk for Huntington's disease (HD) have for undergoing predictive genetic testing are planning a family and prevention of passing on an expanded CAG-repeat to future offspring. After having received an unfavourable test result, a couple may consider prenatal testing in the foetus or preimplantation genetic diagnostic testing (PGD) in embryos. Testing of the foetus or embryos is possible by means of direct testing of the expanded repeat. Optimal reliability in testing the foetus or embryos requires the establishment of the origin of the repeats of both parents in the foetus. For PGD the analysis is combined with or sometimes solely based on identification of the at-risk haplotype in the embryo. This policy implies that in the context of direct testing, the healthy partner's CAG repeat lengths in the HD gene are also tested, but with the expectation that the repeat lengths of the partner are within the normal range, with the proviso that the partner's pedigree is free of clinically confirmed HD. However, recent studies have shown that the expanded repeat has been observed more often in the general population than previously estimated. Moreover, we have unexpectedly observed an expanded repeat in the non-HD partner in four cases which had far-reaching consequences. Hence, we propose that in the context of reproductive genetic counselling, prior to a planned pregnancy, and irrespective of the outcome of the predictive test in the HD-partner, the non-HD partner should also be given the option of being tested on the expanded allele. International recommendations for predictive testing for HD should be adjusted.Genetics of disease, diagnosis and treatmen
Thermodynamic properties of confined interacting Bose gases - a renormalization group approach
A renormalization group method is developed with which thermodynamic
properties of a weakly interacting, confined Bose gas can be investigated.
Thereby effects originating from a confining potential are taken into account
by periodic boundary conditions and by treating the resulting discrete energy
levels of the confined degrees of freedom properly. The resulting density of
states modifies the flow equations of the renormalization group in momentum
space. It is shown that as soon as the characteristic length of confinement
becomes comparable to the thermal wave length of a weakly interacting and
trapped Bose gas its thermodynamic properties are changed significantly. This
is exemplified by investigating characteristic bunching properties of the
interacting Bose gas which manifest themselves in the second order coherence
factor
Phase separation in supersolids
We study quantum phase transitions in the ground state of the two dimensional
hard-core boson Hubbard Hamiltonian. Recent work on this and related models has
suggested ``supersolid'' phases with simultaneous diagonal and off-diagonal
long range order. We show numerically that, contrary to the generally held
belief, the most commonly discussed ``checkerboard'' supersolid is
thermodynamically unstable. Furthermore, this supersolid cannot be stabilized
by next near neighbour interaction. We obtain the correct phase diagram using
the Maxwell construction. We demonstrate the ``striped'' supersolid is
thermodynamically stable and is separated from the superfluid phase by a
continuous phase transition.Comment: 4 pages, 4 eps figures, include
Bose condensates in a harmonic trap near the critical temperature
The mean-field properties of finite-temperature Bose-Einstein gases confined
in spherically symmetric harmonic traps are surveyed numerically. The solutions
of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for
the condensate and low-lying quasiparticle excitations are calculated
self-consistently using the discrete variable representation, while the most
high-lying states are obtained with a local density approximation. Consistency
of the theory for temperatures through the Bose condensation point requires
that the thermodynamic chemical potential differ from the eigenvalue of the GP
equation; the appropriate modifications lead to results that are continuous as
a function of the particle interactions. The HFB equations are made gapless
either by invoking the Popov approximation or by renormalizing the particle
interactions. The latter approach effectively reduces the strength of the
effective scattering length, increases the number of condensate atoms at each
temperature, and raises the value of the transition temperature relative to the
Popov approximation. The renormalization effect increases approximately with
the log of the atom number, and is most pronounced at temperatures near the
transition. Comparisons with the results of quantum Monte Carlo calculations
and various local density approximations are presented, and experimental
consequences are discussed.Comment: 15 pages, 11 embedded figures, revte
Fermi-Bose quantum degenerate ^40 K - ^87 Rb mixture with attractive interaction
We report on the achievement of simultaneous quantum degeneracy in a mixed
gas of fermionic ^40 K and bosonic ^87 Rb. Potassium is cooled to 0.3 times the
Fermi temperature by means of an efficient thermalization with evaporatively
cooled rubidium. Direct measurement of the collisional cross-section confirms a
large interspecies attraction. This interaction is shown to affect the
expansion of the Bose-Einstein condensate released form the magnetic trap,
where it is immersed in the Fermi sea.Comment: 5 pages, 4 figures, replaced one figure plus some change
Two-fermion bound state in a Bose-Einstein condensate
A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of
ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate
phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A
two-fermion bound state is predicted to arise, and the signature of the bound
state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure
Probing dipolar effects with condensate shape oscillation
We discuss the low energy shape oscillations of a magnetic trapped atomic
condensate including the spin dipole interaction. When the nominal isotropic
s-wave interaction strength becomes tunable through a Feshbach resonance (e.g.
as for Rb atoms), anisotropic dipolar effects are shown to be detectable
under current experimental conditions [E. A. Donley {\it et al.}, Nature {\bf
412}, 295 (2001)].Comment: revised version, submitte
- …