38 research outputs found

    Kinetic Phenomena in Thin Film Electronic Materials

    Get PDF
    Contains reports on ten research projects.Semiconductor Research Corporation (Grant 83-01-033)National Science Foundation (Grant DMR 81-19285)U.S. Department of Energy (Contract DE-ACO2-82-ER-13019)National Science Foundation (Grant ECS82-05701)International Business Machines, Inc.Dartmouth UniversityJoint Services Electronics Program (Contract DAAG29-83-K-0003

    Kinetic Phenomena in Thin Film Electronic Materials

    Get PDF
    Contains reports on nine research projects.National Science Foundation (Grant ECS85-06565)Semiconductor Research CorporationU.S. Air Force - Office of Scientific Research (Grant AFOSR-85-0154)National Science Foundation (Grant DMR81-19285)Sony International Business Machines, Inc.Dartmouth UniversityJoint Services Electronics Program (Contract DAAG29-83-K-0003)Semiconductor Research Corporatio

    Kinetic Phenomena in Thin Film Electronic Materials

    Get PDF
    Contains reports on twelve research projects.National Science Foundation (Grant ECS 85-06505)U.S. Air Force - Office of Scientific Research (Contract AFOSR-85-0154)Semiconductor Research Corporation (Contract 87-SP-080)National Science Foundation (Grant ECS 85-06565)International Business Machines, Inc.Sony International Business Machines, Inc.National Science Foundation (Grant DMR 84-18718)International Business Machines, Thomas J. Watson Research CenterJoint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant DMR 85-06030)Charles Stark Draper Laboratory (Contract DL-H-261827)Nippon Telegraph and Telephone, Inc

    Microstructural Evolution in Thin Films of Electronic Materials

    Get PDF
    Contains reports on ten research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science FoundationU.S. Air Force - Office of Scientific Research Contract AFOSR 85-0154Semiconductor Research CorporationAT&TInternational Business Machines CorporationNational Institutes of Healt

    Microstructural Evolution in Thin Films of Electronic Materials

    Get PDF
    Contains reports on eight research projects.National Science Foundation (Grant ECS 85-06565)U.S. Air Force - Office of Scientific Research (Contract AFOSR 85-0154)National Science Foundation-Materials Research Laboratory(Grant DMR 81-19285)National Science Foundation (Grant DMR 85-06030)International Business Machines, Inc. Faculty Development AwardMitsui Career Development AwardInternational Business Machines, Inc.Semiconductor Research Corporation (Contract 86-05-080)Joint Services Electronics Program (Contract DAAG-29-83-K-0003)Charles Stark Draper LaboratoryDefense Advanced Research Projects Agency (DARPA)Nippon Telegraph and Telephone, Inc

    Computation of thermodynamic properties of quaternary and higher order systems from binary data using shortest distance composition paths

    No full text
    Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions

    Computation of thermodynamic properties of multi-component solutions: extension of toop model

    No full text
    This article does not have an abstract
    corecore