18 research outputs found

    Antidiabetic activity of aqueous extract and non polysaccharide fraction of <i>Cynodon dactylon</i> Pers.

    No full text
    660-667Petroleum ether (60o-80oC), chloroform, acetone, ethanol, aqueous and crude hot water extracts of the whole plant of C. dactylon and the two fractions of aqueous extract were tested for antihyperglycaemic activity in glucose overloaded hyperglycemic rats and in alloxan induced diabetic model at two-dose levels, 200 and 400 mg/kg (po) respectively. The aqueous extract of C. dactylon and the non polysaccharide fraction of aqueous extract were found to exhibit significant antihyperglycaemic activity and only the non polysaccharide fraction was found to produce hypoglycemia in fasted normal rats. Treatment of diabetic rats with aqueous extract and non polysaccharide fraction of the plant decreased the elevated biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, haemoglobin and glycosylated haemoglobin significantly. Comparatively, the non polysaccharide fraction of aqueous extract was found to be more effective than the aqueous extract

    Antidiabetic activity of flower buds of Michelia champaca Linn.

    No full text
    Objective: To identify the antihyperglycemic activity of various extracts, petroleum ether (60-80 o ), chloroform, acetone, ethanol, aqueous and crude aqueous, of the flower buds of Michelia champaca , and to identify the antidiabetic activity of active antihyperglycemic extract. Materials and Methods: Plant extracts were tested for antihyperglycemic activity in glucose overloaded hyperglycemic rats. The effective antihyperglycemic extract was tested for its hypoglycemic activity at two-dose levels, 200 and 400 mg/kg respectively. To confirm its utility in the higher model, the effective extract of M. champaca was subjected to antidiabetic study in alloxan induced diabetic model at two dose levels, 200 and 400 mg/kg respectively. The biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, hemoglobin and glycosylated hemoglobin were also assessed in the experimental animals. Results: The ethanolic extract of M. champaca exhibited significant antihyperglycemic activity but did not produce hypoglycemia in fasted normal rats. Apart from this extract, the crude aqueous and petroleum ether extracts were found active only at the end of the first hour. Treatment of diabetic rats with ethanolic extract of this plant restored the elevated biochemical parameters significantly (P< 0.05) (P< 0.01) and the activity was found dose dependent. Conclusion: This study supports the traditional claim and the ethanolic extract of this plant could be added in traditional preparations for the ailment of various diabetes-associated complications
    corecore