16,048 research outputs found

    Localised AdS5×S5\bf{AdS_5\times S^5} Black Holes

    Full text link
    We numerically construct asymptotically global AdS5×S5\mathrm{AdS}_5\times \mathrm{S}^5 black holes that are localised on the S5\mathrm{S}^5. These are solutions to type IIB supergravity with S8\mathrm S^8 horizon topology that dominate the theory in the microcanonical ensemble at small energies. At higher energies, there is a first-order phase transition to AdS5\mathrm{AdS}_5-Schwarzschild×S5\times \mathrm{S}^5. By the AdS/CFT correspondence, this transition is dual to spontaneously breaking the SO(6)SO(6) R-symmetry of N=4\mathcal N=4 super Yang-Mills down to SO(5)SO(5). We extrapolate the location of this phase transition and compute the expectation value of the resulting scalar operators in the low energy phase.Comment: 11 pages, 6 figure

    Lumpy AdS5×\bf{_5\times} S5\bf{^5} Black Holes and Black Belts

    Full text link
    Sufficiently small Schwarzschild black holes in global AdS5×_5\timesS5^5 are Gregory-Laflamme unstable. We construct new families of black hole solutions that bifurcate from the onset of this instability and break the full SO(6)(6) symmetry group of the S5^5 down to SO(5)(5). These new "lumpy" solutions are labelled by the harmonics ℓ\ell. We find evidence that the ℓ=1\ell = 1 branch never dominates the microcanonical/canonical ensembles and connects through a topology-changing merger to a localised black hole solution with S8^8 topology. We argue that these S8^8 black holes should become the dominant phase in the microcanonical ensemble for small enough energies, and that the transition to Schwarzschild black holes is first order. Furthermore, we find two branches of solutions with ℓ=2\ell = 2. We expect one of these branches to connect to a solution containing two localised black holes, while the other branch connects to a black hole solution with horizon topology S4×S4\mathrm S^4\times\mathrm S^4 which we call a "black belt".Comment: 20 pages (plus 17 pages for Appendix on Kaluza-Klein Holography), 14 figure

    Terrestrial planets across space and time

    Full text link
    The study of cosmology, galaxy formation and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is 7±17\pm{}1 Gyr for FGK hosts and 8±18\pm{}1 Gyr for M dwarfs. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars by no more than ≈10%\approx 10\%, and that only ≈10%\approx 10\% of the terrestrial planets at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical terrestrial planet in the local Universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable Universe, we argue for a total of ≈1×1019\approx 1\times 10^{19} and ≈5×1020\approx 5\times 10^{20} terrestrial planets around FGK and M stars, respectively. Due to light travel time effects, the terrestrial planets on our past light cone exhibit a mean age of just 1.7±0.21.7\pm 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle and searches for extraterrestrial intelligence at cosmological distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some changes in quantitative results compared to v.1, mainly due to differences in IMF assumption

    Holographic Description of Finite Size Effects in Strongly Coupled Superconductors

    Full text link
    Despite its fundamental and practical interest, the understanding of mesoscopic effects in strongly coupled superconductors is still limited. Here we address this problem by studying holographic superconductivity in a disk and a strip of typical size â„“\ell. For â„“<â„“c\ell < \ell_c, where â„“c\ell_c depends on the chemical potential and temperature, we have found that the order parameter vanishes. The superconductor-metal transition at â„“=â„“c\ell = \ell_c is controlled by mean-field critical exponents which suggests that quantum and thermal fluctuations induced by finite size effects are suppressed in holographic superconductors. Intriguingly, the effective interactions that bind the order parameter increases as â„“\ell decreases. Most of these results are consistent with experimental observations in Pb nanograins at low temperature and qualitatively different from the ones expected in a weakly coupled superconductor.Comment: 4 pages, 3 figure

    Mechanisms of fragmentation of Al-W granular composites under dynamic loading

    Full text link
    Numerical simulations of Aluminum (Al) and Tungsten (W) granular composite rings under various dynamic loading conditions caused by explosive loading were examined. Three competing mechanisms of fragmentation were observed: a continuum level mechanism generating large macrocracks described by the Grady-Kipp fragmentation mechanism, a mesoscale mechanism generating voids and microcracks near the initially unbonded Al/W interfaces due to tensile strains, and a mesoscale jetting due to the development of large velocity gradients between the W particles and adjacent Al. These mesoscale mechanisms can be used to tailor the size of the fragments by selecting an appropriate initial mesostructure for a given loading condition.Comment: 10 pages, 3 figures, submitted to AP

    Assessment of maternal referral systems used for a rural Zambian hospital: the development of setting specific protocols for the identification of complications

    Get PDF
    Background: In resource-limited countries, it is estimated that up to 75% of maternal deaths are preventable. Maternal referral systems are an effective measure to help prevent these deaths. Objective: The objective of this study was to delineate criteria that health care workers use to identify obstetrical emergencies and make referrals, in order to evaluate the effectiveness of the established referral system and to implement improvements to this system.Methods: Using a qualitative study design, the individuals with the highest level of formal obstetrics training at 10 health posts that refer to a rural Zambian hospital were surveyed using semi-structured interviews regarding their referral protocols. Data were analyzed through open-coding. At the conclusion of the interview, standardized referral protocols for obstetric emergen- cies derived from published guidelines and local practices were distributed.Results: Identified complications resulting in referral most commonly included post-partum hemorrhage (70%), prolonged labor (70%), malpresentation (50%), antepartum hemorrhage (40%), and retained placenta (40%). While numerous reasons for referral were identified, there was little consensus on the referral protocol used for each complication.  Obstacles to successful referral most commonly included cellular network disruptions (70%), distance (50%), and lack of transportation (30%). The referral protocols distributed to health posts covered only 11 of the 23 complications cited as the most common reason for referral.Conclusion: The referral criteria and protocols were updated to include all of the reported complications. We propose this document for others working in resource-limited settings attempting to establish or evaluate a maternal referral systems.Keywords: Maternal referral systems, Zambian hospital, protocols, complications
    • …
    corecore