3,389 research outputs found

    Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary II. Theoretical treatment

    Full text link
    The structural characteristics of the perovskite- based ferroelectric Pb(Zn1/3Nb2/3)O3-9%PbTiO3 at the morphotropic phase boundary (MPB) region (x≃0.09) have been analyzed. The analysis is based on the symmetry adapted free energy functions under the assumption that the total polarization and the unit cell volume are conserved during the transformations between various morphotropic phases. Overall features of the relationships between the observed lattice constants at various conditions have been consistently explained. The origin of the anomalous physical properties at MPB is discussed

    Boundary States, Extended Symmetry Algebra and Module Structure for certain Rational Torus Models

    Full text link
    The massless bosonic field compactified on the circle of rational R2R^2 is reexamined in the presense of boundaries. A particular class of models corresponding to R2=12kR^2=\frac{1}{2k} is distinguished by demanding the existence of a consistent set of Newmann boundary states. The boundary states are constructed explicitly for these models and the fusion rules are derived from them. These are the ones prescribed by the Verlinde formula from the S-matrix of the theory. In addition, the extended symmetry algebra of these theories is constructed which is responsible for the rationality of these theories. Finally, the chiral space of these models is shown to split into a direct sum of irreducible modules of the extended symmetry algebra.Comment: 12 page

    Electronic structure of solid coronene: differences and commonalities to picene

    Full text link
    We have obtained the first-principles electronic structure of solid coronene, which has been recently discovered to exhibit superconductivity with potassium doping. Since coronene, along with picene, the first aromatic superconductor, now provide a class of superconductors as solids of aromatic compounds, here we compare the two cases in examining the electronic structures. In the undoped coronene crystal, where the molecules are arranged in a herringbone structure with two molecules in a unit cell, the conduction band above an insulating gap is found to comprise four bands, which basically originate from the lowest two unoccupied molecular orbitals (doubly-degenerate, reflecting the high symmetry of the molecular shape) in an isolated molecule but the bands are entangled as in solid picene. The Fermi surface for a candidate of the structure of Kx_xcoronene with x=3x=3, for which superconductivity is found, comprises multiple sheets, as in doped picene but exhibiting a larger anisotropy with different topology.Comment: 5 pages, to be published in Phys. Rev.

    2D Yang-Mills Theory as a Matrix String Theory

    Get PDF
    Quantization of two-dimensional Yang-Mills theory on a torus in the gauge where the field strength is diagonal leads to twisted sectors that are completely analogous to the ones that originate long string states in Matrix String Theory. If these sectors are taken into account the partition function is different from the standard one found in the literature and the invariance of the theory under modular transformations of the torus appears to hold in a stronger sense. The twisted sectors are in one-to-one correspondence with the coverings of the torus without branch points, so they define by themselves a string theory. A possible duality between this string theory and the Gross-Taylor string is discussed, and the problems that one encounters in generalizing this approach to interacting strings are pointed out. This talk is based on a previous paper by the same authors, but it contains some new results and a better interpretation of the results already obtained.Comment: 11 pages, LaTeX, 2 figures included with epsf. Talk presented at the 2nd Conference on Quantum aspects of Gauge Theories, Supersymmetry and Unification, Corfu, Greece, 21-26 September 199

    Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis

    Get PDF
    In the past decade, Xenopus tropicalis has emerged as a powerful new amphibian genetic model system, which offers all of the experimental advantages of its larger cousin, Xenopus laevis. Here we investigated the efficiency of transcription activator-like effector nucleases (TALENs) for generating targeted mutations in endogenous genes in X. tropicalis. For our analysis we targeted the tyrosinase (oculocutaneous albinism IA) (tyr) gene, which is required for the production of skin pigments, such as melanin. We injected mRNA encoding TALENs targeting the first exon of the tyr gene into two-cell-stage embryos. Surprisingly, we found that over 90% of the founder animals developed either partial or full albinism, suggesting that the TALENs induced bi-allelic mutations in the tyr gene at very high frequency in the F0 animals. Furthermore, mutations tyr gene were efficiently transmitted into the F1 progeny, as evidenced by the generation of albino offspring. These findings have far reaching implications in our quest to develop efficient reverse genetic approaches in this emerging amphibian model

    Modeling the momentum distributions of annihilating electron-positron pairs in solids

    Get PDF
    Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed chemical and geometric environments of the defects. However, the measured information is indirect and when using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article we present a computational scheme for calculating momentum distributions of electron-positron pairs annihilating in solids. Valence electron states and their interaction with ion cores are described using the all-electron projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our numerical scheme to selected systems and compare three different enhancement (electron-positron correlation) schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-type defect on the ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised manuscript submitted on November 14 200

    On the Classification of Bulk and Boundary Conformal Field Theories

    Get PDF
    The classification of rational conformal field theories is reconsidered from the standpoint of boundary conditions. Solving Cardy's equation expressing the consistency condition on a cylinder is equivalent to finding integer valued representations of the fusion algebra. A complete solution not only yields the admissible boundary conditions but also gives valuable information on the bulk properties.Comment: 7 pages, LaTeX; minor correction
    • …
    corecore