69 research outputs found

    Identifying a nasal gene expression signature associated with hyperinflation and treatment response in severe COPD

    Get PDF
    Hyperinflation contributes to dyspnea intensity in COPD. Little is known about the molecular mechanisms underlying hyperinflation and how inhaled corticosteroids (ICS) affect this important aspect of COPD pathophysiology. To investigate the effect of ICS/long-acting β2-agonist (LABA) treatment on both lung function measures of hyperinflation, and the nasal epithelial gene-expression profile in severe COPD. 117 patients were screened and 60 COPD patients entered a 1-month run-in period on low-dose ICS/LABA budesonide/formoterol (BUD/F) 200/6 one inhalation b.i.d. Patients were then randomly assigned to 3-month treatment with either a high dose BDP/F 100/6 two inhalations b.i.d. (n = 31) or BUD/F 200/6 two inhalations b.i.d. (n = 29). Lung function measurements and nasal epithelial gene-expression were assessed before and after 3-month treatment and validated in independent datasets. After 3-month ICS/LABA treatment, residual volume (RV)/total lung capacity (TLC)% predicted was reduced compared to baseline (p < 0.05). We identified a nasal gene-expression signature at screening that associated with higher RV/TLC% predicted values. This signature, decreased by ICS/LABA treatment was enriched for genes associated with increased p53 mediated apoptosis was replicated in bronchial biopsies of COPD patients. Finally, this signature was increased in COPD patients compared to controls in nasal, bronchial and small airways brushings. Short-term ICS/LABA treatment improves RV/TLC% predicted in severe COPD. Furthermore, it decreases the expression of genes involved in the signal transduction by the p53 class mediator, which is a replicable COPD gene expression signature in the upper and lower airways.Trial registration: ClinicalTrials.gov registration number NCT01351792 (registration date May 11, 2011), ClinicalTrials.gov registration number NCT00848406 (registration date February 20, 2009), ClinicalTrials.gov registration number NCT00158847 (registration date September 12, 2005)

    Digital Health Solutions to Reduce the Burden of Atherosclerotic Cardiovascular Disease Proposed by the CARRIER Consortium

    Get PDF
    Digital health is a promising tool to support people with an elevated risk for atherosclerotic cardiovascular disease (ASCVD) and patients with an established disease to improve cardiovascular outcomes. Many digital health initiatives have been developed and employed. However, barriers to their large-scale implementation have remained. This paper focuses on these barriers and presents solutions as proposed by the Dutch CARRIER (ie, Coronary ARtery disease: Risk estimations and Interventions for prevention and EaRly detection) consortium. We will focus in 4 sections on the following: (1) the development process of an eHealth solution that will include design thinking and cocreation with relevant stakeholders; (2) the modeling approach for two clinical prediction models (CPMs) to identify people at risk of developing ASCVD and to guide interventions; (3) description of a federated data infrastructure to train the CPMs and to provide the eHealth solution with relevant data; and (4) discussion of an ethical and legal framework for responsible data handling in health care. The Dutch CARRIER consortium consists of a collaboration between experts in the fields of eHealth development, ASCVD, public health, big data, as well as ethics and law. The consortium focuses on reducing the burden of ASCVD. We believe the future of health care is data driven and supported by digital health. Therefore, we hope that our research will not only facilitate CARRIER consortium but may also facilitate other future health care initiatives

    Variations in manufacturing quality of diffractive multifocal lenses

    No full text

    Der Einfluss viskoelastischer Substanzen auf das Zellwachstum von Zellkulturen

    No full text
    • …
    corecore