159 research outputs found

    Rhythm monitoring, success definition, recurrence, and anticoagulation after atrial fibrillation ablation: results from an EHRA survey

    Get PDF
    Atrial fibrillation (AF) is a major challenge for the healthcare field. Pulmonary vein isolation is the most effective treatment for the maintenance of sinus rhythm. However, clinical endpoints for the procedure vary significantly among studies. There is no consensus on the definition of recurrence and no clear roadmap on how to deal with recurrences after a failed ablation. The purpose of this study was to perform a survey in order to show how clinicians currently approach this knowledge gap. An online survey, supported by the European Heart Rhythm Association (EHRA) Scientific Initiatives Committee, was conducted between 1 April 2022 and 8 May 2022. An anonymous questionnaire was disseminated via social media and EHRA newsletters, for clinicians to complete. This consisted of 18 multiple-choice questions regarding rhythm monitoring, definitions of a successful ablation, clinical practices after a failed AF ablation, and the continuance of anticoagulation. A total of 107 replies were collected across Europe. Most respondents (82%) perform routine monitoring for AF recurrences after ablation, with 51% of them preferring a long-term monitoring strategy. Cost was reported to have an impact on the choice of monitoring strategy. Self-screening was recommended by most (71%) of the respondents. The combination of absence of symptoms and recorded AF was the definition of success for most (83%) of the respondents. Cessation of anticoagulation after ablation was an option mostly for patients with paroxysmal AF and a low CHA2DS2-VASc score. The majority of physicians perform routine monitoring after AF ablation. For most physicians, the combination of the absence of symptoms and electrocardiographic endpoints defines a successful result after AF ablation

    Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: a randomised remote conditioning study

    Get PDF
    Aims: Remote ischemic conditioning (RIC) alleviates ischemia–reperfusion injury via several pathways, including micro-RNAs (miRs) expression and oxidative stress modulation. We investigated the effects of RIC on endothelial glycocalyx, arterial stiffness, LV remodelling, and the underlying mediators within the vasculature as a target for protection. Methods and results: We block-randomised 270 patients within 48 h of STEMI post-PCI to either one or two cycles of bilateral brachial cuff inflation, and a control group without RIC. We measured: (a) the perfusion boundary region (PBR) of the sublingual arterial microvessels to assess glycocalyx integrity; (b) the carotid-femoral pulse wave velocity (PWV); (c) miR-144,-150,-21,-208, nitrate-nitrite (NOx) and malondialdehyde (MDA) plasma levels at baseline (T0) and 40 min after RIC onset (T3); and (d) LV volumes at baseline and after one year. Compared to baseline, there was a greater PBR and PWV decrease, miR-144 and NOx levels increase (p  15% (odds-ratio of 3.75, p = 0.029). MiR-144 and PWV changes post-RIC were interrelated and associated with LVESV reduction at follow-up (r = 0.40 and 0.37, p < 0.05), in the single-cycle RIC. Conclusion: RIC evokes “vascular conditioning” likely by upregulation of cardio-protective microRNAs, NOx production, and oxidative stress reduction, facilitating reverse LV remodelling

    Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense

    Get PDF
    Oleuropein, one of the main polyphenolic constituents of olive, is cardioprotective against ischemia reperfusion injury (IRI). We aimed to assess the cardioprotection afforded by acute administration of oleuropein and to evaluate the underlying mechanism. Importantly, since antioxidant therapies have yielded inconclusive results in attenuating IRI-induced damage on top of conditioning strategies, we investigated whether oleuropein could enhance or imbed the cardioprotective manifestation of ischemic postconditioning (PostC). Oleuropein, given during ischemia as a single intravenous bolus dose reduced the infarct size compared to the control group both in rabbits and mice subjected to myocardial IRI. None of the inhibitors of the cardioprotective pathways, l-NAME, wortmannin and AG490, influence its infarct size limiting effects. Combined oleuropein and PostC cause further limitation of infarct size in comparison with PostC alone in both animal models. Oleuropein did not inhibit the calcium induced mitochondrial permeability transition pore opening in isolated mitochondria and did not increase cGMP production. To provide further insights to the different cardioprotective mechanism of oleuropein, we sought to characterize its anti-inflammatory potential in vivo. Oleuropein, PostC and their combination reduce inflammatory monocytes infiltration into the heart and the circulating monocyte cell population. Oleuropein's mechanism of action involves a direct protective effect on cardiomyocytes since it significantly increased their viability following simulated IRI as compared to non-treated cells. Οleuropein confers additive cardioprotection on top of PostC, via increasing the expression of the transcription factor Nrf-2 and its downstream targets in vivo. In conclusion, acute oleuropein administration during ischemia in combination with PostC provides robust and synergistic cardioprotection in experimental models of IRI by inducing antioxidant defense genes through Nrf-2 axis and independently of the classic cardioprotective signaling pathways (RISK, cGMP/PKG, SAFE)

    Effect of short-acting beta blocker on the cardiac recovery after cardiopulmonary bypass

    Get PDF
    The objective of this study was to investigate the effect of beta blocker on cardiac recovery and rhythm during cardiac surgeries. Sixty surgical rheumatic heart disease patients were received esmolol 1 mg/kg or the same volume of saline prior to removal of the aortic clamp. The incidence of cardiac automatic re-beat, ventricular fibrillation after reperfusion, the heart rate after steady re-beat, vasoactive drug use during weaning from bypass, the posterior parallel time and total bypass time were decreased by esmolol treatment. In conclusion: Esmolol has a positive effect on the cardiac recovery in cardiopulmonary bypass surgeries

    Apyrase treatment of myocardial infarction according to a clinically applicable protocol fails to reduce myocardial injury in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectonucleotidase dependent adenosine generation has been implicated in preconditioning related cardioprotection against ischemia-reperfusion injury, and treatment with a soluble ectonucleotidase has been shown to reduce myocardial infarct size (IS) when applied prior to induction of ischemia. However, ectonucleotidase treatment according to a clinically applicable protocol, with administration only after induction of ischemia, has not previously been evaluated. We therefore investigated if treatment with the ectonucleotidase apyrase, according to a clinically applicable protocol, would reduce IS and microvascular obstruction (MO) in a large animal model.</p> <p>Methods</p> <p>A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min, in 16 anesthetized pigs (40-50 kg). The pigs were randomized to 40 min of 1 ml/min intracoronary infusion of apyrase (10 U/ml, n = 8) or saline (0.9 mg/ml, n = 8), twenty minutes after balloon inflation. Area at risk (AAR) was evaluated by <it>ex vivo </it>SPECT. IS and MO were evaluated by <it>ex vivo </it>MRI.</p> <p>Results</p> <p>No differences were observed between the apyrase group and saline group with respect to IS/AAR (75.7 ± 4.2% vs 69.4 ± 5.0%, p = NS) or MO (10.7 ± 4.8% vs 11.4 ± 4.8%, p = NS), but apyrase prolonged the post-ischemic reactive hyperemia.</p> <p>Conclusion</p> <p>Apyrase treatment according to a clinically applicable protocol, with administration of apyrase after induction of ischemia, does not reduce myocardial infarct size or microvascular obstruction.</p

    A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure. an expert panel consensus

    Get PDF
    Inotropes aim at increasing cardiac output by enhancing cardiac contractility. They constitute the third pharmacological pillar in the treatment of patients with decompensated heart failure, the other two being diuretics and vasodilators. Three classes of parenterally administered inotropes are currently indicated for decompensated heart failure, (i) the beta adrenergic agonists, including dopamine and dobutamine and also the catecholamines epinephrine and norepinephrine, (ii) the phosphodiesterase III inhibitor milrinone and (iii) the calcium sensitizer levosimendan. These three families of drugs share some pharmacologic traits, but differ profoundly in many of their pleiotropic effects. Identifying the patients in need of inotropic support and selecting the proper inotrope in each case remain challenging. The present consensus, derived by a panel meeting of experts from 21 countries, aims at addressing this very issue in the setting of both acute and advanced heart failure

    Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction

    Get PDF
    NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension

    Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction

    Get PDF
    Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (n = 12) received equivalent doses of vehicle. Infarct size (Masson's trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis

    In vivo MRI and ex vivo histological assessment of the cardioprotection induced by ischemic preconditioning, postconditioning and remote conditioning in a closed-chest porcine model of reperfused acute myocardial infarction: importance of microvasculature

    Get PDF
    BACKGROUND: Cardioprotective value of ischemic post- (IPostC), remote (RIC) conditioning in acute myocardial infarction (AMI) is unclear in clinical trials. To evaluate cardioprotection, most translational animal studies and clinical trials utilize necrotic tissue referred to the area at risk (AAR) by magnetic resonance imaging (MRI). However, determination of AAR by MRI' may not be accurate, since MRI-indices of microvascular damage, i.e., myocardial edema and microvascular obstruction (MVO), may be affected by cardioprotection independently from myocardial necrosis. Therefore, we assessed the effect of IPostC, RIC conditioning and ischemic preconditioning (IPreC; positive control) on myocardial necrosis, edema and MVO in a clinically relevant, closed-chest pig model of AMI. METHODS AND RESULTS: Acute myocardial infarction was induced by a 90-min balloon occlusion of the left anterior descending coronary artery (LAD) in domestic juvenile female pigs. IPostC (6 x 30 s ischemia/reperfusion after 90-min occlusion) and RIC (4 x 5 min hind limb ischemia/reperfusion during 90-min LAD occlusion) did not reduce myocardial necrosis as assessed by late gadolinium enhancement 3 days after reperfusion and by ex vivo triphenyltetrazolium chloride staining 3 h after reperfusion, however, the positive control, IPreC (3 x 5 min ischemia/reperfusion before 90-min LAD occlusion) did. IPostC and RIC attenuated myocardial edema as measured by cardiac T2-weighted MRI 3 days after reperfusion, however, AAR measured by Evans blue staining was not different among groups, which confirms that myocardial edema is not a measure of AAR, IPostC and IPreC but not RIC decreased MVO. CONCLUSION: We conclude that IPostC and RIC interventions may protect the coronary microvasculature even without reducing myocardial necrosis
    corecore