732 research outputs found

    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates

    Get PDF
    We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La2x_{2-x}Srx_xCuO4_4 and La1.8x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No kzk_z dispersion is observed along the nodal direction, whereas a significant antinodal kzk_z dispersion is identified. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van-Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2x_{2-x}Srx_xCuO4_4 can not be assigned to the van-Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat

    Strain-Engineering Mott-Insulating La2_2CuO4_4

    Get PDF
    The transition temperature TcT_\textrm{c} of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2x_{2-\mathrm{x}}Srx_\mathrm{x}CuO4_4 thin films, such substrates are sub-optimal and the highest TcT_\textrm{c} is instead obtained using LaSrAlO4_4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in TcT_\mathrm{c} and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2_2CuO4_4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest TcT_\textrm{c} under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.Comment: 15 pages, 7 figures and 2 tables (including Supplementary Information

    Quantum Fluctuations in a Weakly Correlated Mott Insulator

    Full text link
    Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO2_2, single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single magnon dispersion is only described satisfactorily when including significant renormalization stemming from quantum fluctuations. Comparative results on La2_2CuO4_4 indicate that quantum fluctuations are much stronger in SrCuO2_2 suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations suggest an exotic incommensurate magnetic order as the ground state that competes with the antiferromagnetic N\'eel order. Our results indicate that SrCuO2_2 -- due to strong quantum fluctuations -- is a unique starting point for the exploration of novel magnetic ground states.Comment: Supplementary Information available upon reques

    Revealing the Orbital Composition of Heavy Fermion Quasiparticles in CeRu2Si2

    Full text link
    We present a resonant angle-resolved photoemission spectroscopy (ARPES) study of the electronic band structure and heavy fermion quasiparticles in CeRu2Si2. Using light polarization analysis, considerations of the crystal field environment and hybridization between conduction and f electronic states, we identify the d-electronic orbital character of conduction bands crossing the Fermi level. Resonant ARPES spectra suggest that the localized Ce f states hybridize with eg and t2g states around the zone center. In this fashion, we reveal the orbital structure of the heavy fermion quasiparticles in CeRu2Si2 and discuss its implications for metamagnetism and superconductivity in the related compound CeCu2Si2

    Decoupling of Lattice and Orbital Degrees of Freedom in an Iron-Pnictide Superconductor

    Full text link
    The interplay of structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity, defined as the breaking of four-fold symmetry triggered by electronic degrees of freedom, is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction (XRD), we reveal a new structural orthorhombic phase with an exceptionally high onset temperature (Tort250T_\mathrm{ort} \sim 250 K), which coexists with superconductivity (Tc=25T_\mathrm{c} = 25 K), in an electron-doped iron-pnictide superconductor far from the underdoped region. Furthermore, our angle-resolved photoemission spectroscopy (ARPES) measurements demonstrate the absence of electronic nematic order as the driving mechanism, in contrast to other underdoped iron pnictides where nematicity is commonly found. Our results establish a new, high temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.Comment: SI available upon reques

    Fate of charge order in overdoped La-based cuprates

    Full text link
    In high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in La2x_{2−x}Srx_{x}CuO4_{4} and La1.8x_{1.8−x}Eu0.2_{0.2}Srx_{x}CuO4_{4}. Ultra high energy resolution experiments demonstrate the importance of the separation of inelastic and elastic scattering processes. Long-range temperature-dependent stripe order is only found below optimal doping. At higher doping, short-range temperature-independent correlations are present up to the highest doping measured. This transformation is distinct from and preempts the pseudogap critical doping. We argue that the doping and temperature-independent short-range correlations originate from unresolved electron–phonon coupling that broadly peaks at the stripe ordering vector. In La2x_{2−x}Srx_{x}CuO4_{4}, long-range static stripe order vanishes around optimal doping and we discuss both quantum critical and crossover scenarios

    Electronic reconstruction forming a C2C_2-symmetric Dirac semimetal in Ca3_3Ru2_2O7_7

    Get PDF
    Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or an electronic order. In the stoichiometric ruthenate Ca3_3Ru2_2O7_7, numerous Fermi surface sensitive probes indicate a low-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca3_3Ru2_2O7_7 a C2C_2-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure -- incompatible with translational-symmetry-breaking density waves -- serves as an important test for band structure calculations of correlated electron systems

    Plasma Kallikrein Mediates Retinal Vascular Dysfunction and Induces Retinal Thickening in Diabetic Rats

    Get PDF
    Objective: Plasma kallikrein (PK) has been identified in vitreous fluid obtained from individuals with diabetic retinopathy and has been implicated in contributing to retinal vascular dysfunction. In this report, we examined the effects of PK on retinal vascular functions and thickness in diabetic rats. Research Design and Methods: We investigated the effects of a selective PK inhibitor, ASP-440, and C1 inhibitor (C1-INH), the primary physiological inhibitor of PK, on retinal vascular permeability (RVP) and hemodynamics in rats with streptozotocin-induced diabetes. The effect of intravitreal PK injection on retinal thickness was examined by spectral domain optical coherence tomography. Results: Systemic continuous administration of ASP-440 for 4 weeks initiated at the time of diabetes onset inhibited RVP by 42% (P = 0.013) and 83% (P < 0.001) at doses of 0.25 and 0.6 mg/kg per day, respectively. Administration of ASP-440 initiated 2 weeks after the onset of diabetes ameliorated both RVP and retinal blood flow abnormalities in diabetic rats measured at 4 weeks’ diabetes duration. Intravitreal injection of C1-INH similarly decreased impaired RVP in rats with 2 weeks’ diabetes duration. Intravitreal injection of PK increased both acute RVP and sustained focal RVP (24 h postinjection) to a greater extent in diabetic rats compared with nondiabetic control rats. Intravitreal injection of PK increased retinal thickness compared with baseline to a greater extent (P = 0.017) in diabetic rats (from 193 ±\pm 10 μ\mum to 223 ±\pm 13 μ\mum) compared with nondiabetic rats (from 182 ±\pm 8 μ\mum to 193 ±\pm 9 μ\mum). Conclusions: These results show that PK contributes to retinal vascular dysfunctions in diabetic rats and that the combination of diabetes and intravitreal injection of PK in rats induces retinal thickening
    corecore