163 research outputs found

    Detection of the Rotation of the Earth with a Superfluid Gyrometer

    Get PDF
    The effect of the rotation of the Earth, Ω⊕, on a superfluid resonator equipped with a 4.0 cm exp 2 rotation pickup loop and with a microaperture is reported. The velocity circulation induced in the loop by the rotation is detected by phase-slippage techniques. The magnitude of Ω⊕ is measured to better than 1%, and the north direction to ±0.5° for a 10 h observation time. This experiment is the superfluid counterpart of interferometric measurements based on the Sagnac effect.Peer reviewe

    Evidence for Single-Vortex Pinning and Unpinning Events in Superfluid 4He

    Get PDF
    We have observed two critical velocity levels for phase slips in superfluid 4He at temperatures between 14 and 44 mK, due to microparticles formed in the cell at low temperature. We interpret these observations as evidence for pinning and unpinning events of single vortices of nanometric size. From a study of the lifetime and unpinning velocities of the pinned vortices, we are led to conclude that unpinning takes place by quantum tunneling.Peer reviewe

    Statistics of electron tunneling in normal tunnel junctions: An analytical and numerical study including circuit effects

    Get PDF
    Statistics of electron tunneling in normal tunnel junctions is studied analytically and numerically taking into account circuit (environment) effects. Full counting statistics, as well as full statistics of voltage and phase have been found for arbitrary times of observation. The theoretical analysis was based on the classical master equation, whereas the numerical simulations employed standard Monte-Carlo methods.Peer reviewe

    Thermal shot noise in top-gated single carbon nanotube field effect transistors

    Get PDF
    The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dimensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of 13ÎĽe/Hz13\mathrm{\mu e/\sqrt{Hz}} in the 0.2-0.8GHz0.8 \mathrm{GHz} band.Comment: 3 pages, 4 figure

    Nuclear antiferromagnetism in rhodium metal at positive and negative nanokelvin temperatures

    Get PDF
    We have measured the dynamic susceptibility of polycrystalline rhodium foils down to 280 pK and up to -750 pK. These record-low and -high nuclear spin temperatures were reached by adiabatic demagnetization using initial polarizations of 83 and -60%. At T>0, the static susceptibility, integrated from NMR spectra, displays an antiferromagnetic Curie-Weiss law, with θ=-1.8±0.3 nK. At T<0, a crossover from ferro- to antiferromagnetic tendency is found around -6 nK. We obtain Jnn/h=-17±3 Hz and Jnnn/h=10±3 Hz if only nearest and next nearest neighbor interactions are assumed.Peer reviewe

    Tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors

    Get PDF
    We analyze tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors. Also tunneling of Cooper pairs across two capacitively coupled Cooper-pair boxes is considered, when the capacitive coupling and Cooper pair tunneling are provided by a small Josephson junction between the islands. The theoretical analysis is done at subgap voltages, where the current-voltage characteristics depend strongly on the macroscopic eigenstates of the island(s) and their coupling to the dissipative environment. As the environment we use an impedance which satisfies Re[Z]<<R_Q and a few LC-oscillators in series with Z. The numerically calculated I-V curves are compared with experiments where the quantum states of mesoscopic SQUIDs are probed with inelastic Cooper pair tunneling. The main features of the observed I-V data are reproduced. Especially, we find traces of band structure in the higher excited states of the Cooper-pair boxes as well as traces of multiphoton processes between two Cooper-pair boxes in the regime of large Josephson coupling.Comment: 9 pages, 9 figures, Revtex

    Theory of Interplay of Nuclear Magnetism and Superconductivity in AuIn2

    Full text link
    The recently reported coexistence of a magnetic order, with the critical temperature T_M=35 \mu*K, and superconductivity, with the critical temperature T_S=207 m*K, in AuIn_2 is studied theoretically. It is shown that superconducting (S) electrons and localized nuclear magnetic moments (LM's) interact dominantly via the contact hyperfine (EX) interaction, giving rise to a spiral (or domain-like) magnetic order in superconducting phase. The electromagnetic interaction between LM's and S electrons is small compared to the EX one giving minor contribution to the formation of the oscillatory magnetic order. In clean samples (l>\xi_0) of AuIn2_2 the oscillatory magnetic order should produce a line of nodes in the quasiparticle spectrum of S electrons giving rise to the power law behavior. The critical field H_c(T=0) in the coexistence phase is reduced by factor two with respect to its bare value.Comment: 4 pages with 2 PS figures, RevTeX, submitted to Physical Review B - Rapid Communication
    • …
    corecore