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Statistics of electron tunneling in normal tunnel junctions: An analytical and numerical study
including circuit effects
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Statistics of electron tunneling in normal tunnel junctions is studied analytically and numerically taking into
account circuit �environment� effects. Full counting statistics, as well as full statistics of voltage and phase
have been found for arbitrary times of observation. The theoretical analysis was based on the classical master
equation, whereas the numerical simulations employed standard Monte-Carlo methods.

DOI: 10.1103/PhysRevB.74.195322 PACS number�s�: 74.50.�r, 05.40.Ca, 74.78.Na

I. INTRODUCTION

Shot noise produced by electron current has been known
for nearly 90 years.1 The interest in this phenomenon has
revived recently due to the great importance of shot noise for
modern mesoscopic devices.2 Shot noise provides valuable
information on the charge of carriers, which are responsible
for the electric current. At present, many researchers are not
content with the parametrization of noise using variance or
noise temperature and look for a complete picture of charge
noise given by all cumulants of the probability distribution
for the number of electrons, which traverse the junction dur-
ing a fixed period of time. The full set of moments or cumu-
lants determines the full counting statistics. The theoretical
study of the full counting statistics was initiated by Levitov
and Lezovik,3 and recently these studies have been intensi-
fied, and have brought about important results concerning the
effect of environment on the statistics �crossover from the
voltage to the current bias�.4,5 These studies focused on the
long-time �low-frequency� limit of the full counting statis-
tics.

It is difficult to study full counting statistics experimen-
tally, but progress has been achieved in this direction too.
Experimentalists do not have direct access to counting statis-
tics itself, i.e. they cannot determine the moments of time
when electrons cross the junction, but instead they can scan
voltage noise produced over a shunt by tunneling events. Up
to now, only the first nontrivial cumulant, namely the third
cumulant �skewness�,6,7 has been detected experimentally. In
the literature, there has been discussion of other methods of
noise spectroscopy. It has been demonstrated theoretically
and experimentally that a Coulomb-blockaded tunnel junc-
tion is an effective probe of shot noise8 �and of other types of
noise as well 9�. Ankerhold and Grabert10 proposed using the
process of macroscopic quantum tunneling in a Josephson
junction for measurement of the fourth cumulant. Tobiska
and Nazarov11 suggested using a superconducting Josephson
junction close to the critical current as a threshold detector.
This method has also been studied experimentally.12

In tunnel junctions, shot noise is produced by discrete
electrons, which tunnel quantum-mechanically through a
high potential barrier and, thus, noise characterizes this
quantum-mechanical process. This was the reason to inves-
tigate shot noise with modern quantum-field techniques.5

However, it is known that though quantum mechanics is cru-
cial for formulation of basic statistic properties of electron
transport, after the basic statistical properties of electron tun-
neling have already been formulated, the following statistical
analysis, which should lead to knowledge of full statistics,
can be done without any reference to quantum mechanics. In
particular, Nagaev13 has studied the effect of environment
�circuit� on the counting statistics using the classic
Boltzmann-Langevin approach, which agrees with the results
of the quantum-mechanical analysis.

Our present work describes a further development of the
classical analysis of statistics of electron tunneling using the
formalism of the master equation and direct numerical simu-
lations. The master equation has been widely used for study-
ing various problems of statistics in physics and in other
fields. In particular, they used the master equation for the
voltage probability distribution for the analysis of IV curves
and noise within the framework of the “orthodox theory” of
the Coulomb blockade of tunnel junctions,14,15 and for study-
ing a biased double-barrier junction.16 The master equation
has also been employed for studying counting statistics in
various mesoscopic setups,17 but only in the long-time �low-
frequency� limit. Here our intention is to use the master
equation for full statistics of charge transfer through a nor-
mal junction for any time scale. We write here full statistics
instead of full counting statistics since we have analyzed not
only the statistics of electron tunneling events �counting� but
also the statistics of voltage and phase generated by these
events. This is important, since, as mentioned above, typical
experiments probe voltage or phase instead of the number of
electrons. In the long-time �low frequency� limit, our results
completely agree with the previous quantum-mechanical
analysis.5 However, our final expressions valid at T=0 are
not restricted to long times and provide information on the
full statistics for time scales much shorter than the circuit
relaxation time.

II. ELECTRIC CIRCUIT AND IV CURVE

We consider the simplest circuit, which is standard for
studies of shot noise in tunnel junctions: a tunnel junction of
resistance RT and of capacitance C biased from an ideal volt-
age source V0 via a resistance R �called shunt� in series �Fig.
1�a��. The voltage across the junction is VT=V0−V where
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V= IR is the voltage over the shunt resistor and I=V0 / �RT

+R� is the current through the junction. A basic parameter for
our analysis is the ratio �=R /RT. If ��1, the circuit corre-
sponds to an ideal voltage bias V0�VT, whereas if ��1,
this is the case of ideal current bias.

The standard method of noise spectroscopy is to measure
voltage V at the shunt.6,7 On the other hand, a Josephson
junction added parallel to the shunt �Fig. 1�b�� may probe
the phase difference fluctuations at the shunt.8,9 We assume
that the both resistances, RT and R, clearly exceed the quan-
tum resistance RK=h /e2. According to the orthodox theory 14

at T=0, for an ideal voltage bias �VT�V0� the average
rate of tunneling through the junction at VT�e /2C is
�VT−e /2C� /eRT. The corresponding IV curve is shown in
Fig. 1�c�. The junction is Coulomb blockaded as far as the
voltage VT does not exceed the Coulomb voltage offset
e /2C.

III. FULL STATISTICS FOR NEARLY IDEAL
VOLTAGE BIAS

There is a straightforward procedure to find the full sta-
tistics in the limit of ideal voltage bias exactly.8,9 Because of
the constant voltage at the junction the probability of tunnel-
ing is also constant and the full counting statistics is given by
the Poisson distribution. The generating function, which
yields all moments of the distribution, is

Fc��,t� = �
n

e�nPn�t� = e�VTt/eRT��e�−1� = e�It/e��e�−1�, �1�

where Pn�t�=e−n̄n̄n /n! is the Poisson distribution, n is the
number of tunneling events during the time interval t. The
average number of events is determined by the current: n̄
= It /e.

Though in the limit of ideal voltage bias the voltage at the
junction VT�V0 practically does not vary, the small voltage
V�V0 at the shunt strongly fluctuates. In order to find the
statistics of voltage V, let us consider a sequence of N tun-
neling events at random moments of time tj �j=1,2 , . . .N�,
which may occur during the long time interval T. Time T is
connected with N via the relation N= IT /e. Every tunneling
event produces a voltage pulse at the shunt, so the voltage
varies in time as

V�t� = �
j=1

N
e

C
e−�t−tj�/���t − tj� , �2�

where �=RC and ��t� is the step function. Then one can find
the generating function for the voltage distribution averaging
over random moments of time tj:

Fv��� = �e�v� = �e��je
−�t−tj�/�� = 	

j=1

N 

0

T dtj

T
e�e−�t−tj�/���t−tj�

= �1 +
�v���

T
�N

= e����I/e, �3�

where the dimensionless voltage v=VC /e has been intro-
duced,

�v��� = 

0

	

dt�e�e−t/�
− 1� = − ��E1�− �� + 
 + ln�− ���

�4�

is the contribution of a single tunneling event, 
 is Euler’s
constant, and E1�z�=
z

	dte−t / t is the exponential integral.
Let us consider the random phase variation, which fol-

lows from Eq. �2� and the Josephson relation d� /dt=eV /�:

��t� = �
j=1

N

r�1 − e−�t−tj�/����t − tj� , �5�

where r=2
R /RK. Our goal is to find the full statistics for
the phase difference ���t�=��t+ t0�−��t0�=� j�� j during a
fixed time interval t, where the contribution from the tunnel-
ing at the moment tj is

�� j = r�1 − e−�t+t0−tj�/����t + t0 − tj� − r�1 − e−�t0−tj�/��

���t0 − tj� . �6�

Similar to the voltage statistics one should find the generat-
ing function for the phase difference, which does not depend
on t0 after averaging:

F���,t� = �e����t�� = 	
j=1

N 

0

T dtj

T
e���j/r = �1 +

�����
T

�N

= e����,t�I/e, �7�

where �=� /r is the rescaled phase and

����,t� = − t − ��e��E1��� − E1��e−t/��� + E1�− ��1 − e−t/���

+ 
 + ln�− ��1 − e−t/���� . �8�

We have introduced the rescaled phase since after this, sta-
tistics of phase at long times is identical to counting statistics
�see below�. Note that at �= ir the generating function
F��� , t� yields the phase correlator �ei��t�−i��0��, which deter-
mines the current through the normal tunnel junction in the
P�E� theory, whereas at �=2ir this yields the phase cor-
relator for the Cooper pairs in the Josephson junction.8,9 At
long times t��, the phase statistics becomes identical to the
counting statistics �apart from the scaling factor r�:

FIG. 1. Electric circuit: �a� Normal tunnel junction voltage-
biased through the shunt resistance R. �b� Parallel to the shunt there
is a Josephson junction, which probes the phase difference at the
shunt. �c� The IV curve of the normal junction in the limit of ideal
voltage bias.
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F���,t� = e�It/e��e�−1�. �9�

This is equal to Fc�� , t�, Eq. �1�, with �=�. On the other
hand, at short times t�� the voltage does not vary essen-
tially during the time t, and the phase statistics should be
identical to the voltage statistics. Indeed, at t��, Eq. �7�
yields the voltage generating function Fv���, Eq. �3�, with
�=�t /�.

IV. FULL VOLTAGE STATISTICS FROM MASTER
EQUATION

In order to find the full voltage statistics for an arbitrary
bias, we use the master equation for the voltage probability
density P�V , t�:

�P�V,t�
�t

−
1

RC

�

�V
�VP�V,t�� +

1

eRT
��VT −

e

2C
�P�V,t�

− �VT +
e

2C
�P�V −

e

C
,t�� = 0. �10�

This equation follows directly from the master equation in
Ref. 14 in the limit T→0 when tunneling can occur only in
one direction. Our analysis addresses the case of high cur-
rents when the voltage VT at the junction always exceeds the
Coulomb gap e /2C. We remind that we consider the high-
impedance circuit in which the resistances R and RT exceed
the quantum resistance.

The equation for the generating function �v=VC /e�,

Fv��� =
 e�vP�V�dV , �11�

is obtained by integration of the master equation over the
whole interval of relevant voltages:

�Fv���
�t

+
�

RC

�Fv���
��

+
e� − 1

eRT
� e

C

�Fv���
��

− �V0 −
e

2C
�Fv���� = 0. �12�

In terms of the dimensionless time t̃= t /RC and the dimen-
sionless voltage v0=VC /e, the equation becomes:

�Fv���

� t̃
+ �� + ��e� − 1��

�Fv���
��

− ��e� − 1�

��v0 −
1

2
�Fv��� = 0. �13�

In the stationary case, this is an ordinary differential equation
with respect to �, which has the following solution:

Fv��� = exp��v0 −
1

2
�


0

� ��ez − 1�
z + ��ez − 1�

dz� . �14�

The solution satisfies the natural boundary condition that
Fv���=1 at �=0. According to Eq. �11� this provides a
proper normalization of the probability density.

The limit �=R /RT→0 corresponds to the ideal-voltage-
bias case when the generating functions given by Eqs. �3�

and �14� are identical keeping in mind that the current is I
= �V0−e /2C� / �RT+R�. In the general case of arbitrary �, the
first three cumulants for the voltage at the shunt are:

��V�� =
e

C

d ln Fv���
d�

= IR ,

��V2�� =
e2

C2

d2ln Fv���
d�2 =

IR

2�1 + ��
e

C
,

��V3�� =
e3

C3

d3ln Fv���
d�3 =

IR�2 − ��
6�1 + ��2

e2

C2 . �15�

The first cumulant is simply the average voltage at the shunt.
The third cumulant �skewness� of the voltage distribution
changes sign at �=1/2. The width of the distribution is de-
termined by the smallest from the two voltages: the shunt
voltage IR for the ideal voltage bias ��→0�, or the junction
voltage IRT for the ideal current bias ��→ 	 �.

V. FULL PHASE STATISTICS

In order to find the full phase statistics one should con-
sider the master equation for voltage and phase. We intro-
duce the probability density P�V ,� , t� for the shunt voltage V
and the corresponding phase ��t�= �e / � �
tV�t��dt�. The
master equation is:

�P�V,�,t�
�t

+
eV

�

�P�V,�,t�
��

−
1

RC

�

�V
�VP�V,�,t��

+
1

eRT
��VT −

e

2C
�P�V,�,t� − �VT +

e

2C
�

�P�V −
e

C
,�,t�� = 0. �16�

The full statistics of voltage and phase is determined by the
generating function for the united phase+voltage probability
distribution:

Fv���,�,t� =
 e��+�vP�V,�,t�d�dV , �17�

where �=� /r is the rescaled phase and v=VC /e is the res-
caled voltage. The master equation yields the following
equation for the generating function

�Fv���,�, t̃�

� t̃
+ �� − � + ��e� − 1��

�Fv���,�, t̃�
��

− ��e� − 1��v0 −
1

2
�Fv���,�, t̃� = 0. �18�

Here we use dimensionless time t̃= t /RC. There is a well-
known analogy of the phase with a coordinate of a diffusing
particle and of the voltage with a particle velocity. Corre-
spondingly, the phase distribution can never be stationary
and permanently expands. Thus the generating function is
always time dependent. Performing the Laplace transforma-
tion,
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Fv���,�,s� = 

0

	

e−st̃Fv���,�, t̃�dt̃ , �19�

the equation for the generating function becomes

sFv���,�,s� + �� − � + ��e� − 1��
dFv���,�,s�

d�

− ��e� − 1��v0 −
1

2
�Fv���,�,s� = Fv���,�,t��t=0,

�20�

where Fv��� ,� , t��t=0 is the initial value of the generating
function. The solution of this nonuniform differential equa-
tion is

Fv���,�,s� = F0��,�,s�

�1+�

� Fv���,x,t��t=0

�− � + x + ��ex − 1��F0��,x,s�
dx ,

�21�

where �1 is a zero of the denominator in the integrand func-
tion,

− � + �1 + ��e�1 − 1� = 0, �22�

and

F0��,�,s� = exp�

�1+�

� − s + �v0 −
1

2
���ex − 1�

− � + x + ��ex − 1�
dx�

�23�

is the solution of the uniform equation when the right-hand
part of Eq. �20� vanishes. In order to cut divergence at the
pole at x→�1, an infinitely small constant � was introduced.
In final expressions this divergence is canceled and the limit
�→0 yields convergent results. One can check that the so-
lution Eq. �21� satisfies the boundary condition Fv��� ,� , t�
=1 at �=�=0, which provides a proper normalization of the
probability density. The Laplace transform of this condition
is Fv��� ,� ,s�=1/s at �=�=0. In order to obtain the full
phase statistics from the solution Eq. �21�, one should choose
the initial condition that

Fv���,�,t��t=0 = Fv��� , �24�

where Fv��� is the generating function for the stationary
shunt voltage distribution given by Eq. �14�. Independence
of this function on � means that we fixed the phase �=0 at
the initial moment of time t=0. Finally, the full phase statis-
tics after averaging over the voltage is given by

F���,s� = Fv���,0,s�

= F0��,0,s�

�1+�

0 Fv�x�
�− � + x + ��ex − 1��F0��,x,s�

dx .

�25�

Taking derivatives with respect to the variable � conjugate to
the phase difference one may obtain any moment or cumu-
lant for the phase-difference probability. But even for the

second or the third cumulant taking derivatives is a lengthy
procedure. Therefore, we restrict our further analysis to a
few limiting cases.

Long-time limit

This case was also analyzed quantum mechanically.5 We
shall see that our general classical analysis completely agrees
with it.

In the case of the long-time asymptotics, the most impor-
tant contribution to the integral in Eq. �25� comes from the
close vicinity of the pole determined by Eq. �22�. The solu-
tion of the uniform equation, Eq. �23�, can be also reduced to
the contribution of the pole, and

F0��,�,s� � exp�

�1+�

� − s + s0

− � + x + ��ex − 1�
dx�

� � �

� − �1
��s0−s�/�1+��

, �26�

where

s0 = �v0 −
1

2
���e�1 − 1� . �27�

For the long-time asymptotics, the initial condition for the
generating function is not essential, and one can assume for
simplicity that Fv��� ,x , t��t=0=Fv�x�=1 in Eq. �25�. This
means that the voltage and the phase difference at the shunt
vanish at t=0. Finally, the Laplace transform of the generat-
ing function for phase probability is approximated at long
times with

F���,s� �
1

s − s0
. �28�

After the inverse Laplace transformation, the generating
function in the time presentation is

F���,t� � es0t̃. �29�

This fully agrees with the result obtained by Kindermann et
al.5 from the quantum-mechanical analysis. This is a mani-
festation of a simple law, which Kindermann et al.5 have
formulated for the full statistics of two devices connected in
series with an ideal voltage source. If the full statistics �either
counting statistics or phase statistics� for any of two devices
connected directly to the voltage source without another de-
vice are F1��1� or F2��2� respectively, then for the two de-
vices connected together the full statistics is F���=F1��1�
=F2��2� with parameters �1 and �2 being functions of � de-
termined from equations �=�1+�2 and F1��1�=F2��−�1�. In
our case, the two devices are a normal tunnel junction and a
macroscopic resistor �shunt�. Then F1��1�=e�V0t/eRT��e�1−1� fol-
lows from the phase statistics of the junction at the ideal
voltage bias, Eq. �9�, whereas F2��2�=eV0t�2/eR corresponds to
the shunt under fixed voltage bias V0. Equation �22� is iden-
tical to the equation F1��1�=F2��−�1�.

The generating function Eq. �29� yields the following first
three cumulants:
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����� = r
d ln F�

d�
= r

ds0

d�
t̃ = r

ds0

d�1

d�1

d�
t̃ = r�v0 −

1

2
� t̃

�

1 + �
= r

It

e
,

�30�

���2�� = r2d2ln F�

d�2 = r2�v0 −
1

2
� t̃

�

�1 + ��3 = r2 It

e

1

�1 + ��2 ,

�31�

���3�� = r3d3ln F�

d�3 = r3�v0 −
1

2
� t̃

��1 − 2��
�1 + ��5 = r3 It

e

1 − 2�

�1 + ��4 .

�32�

Kindermann et al.5 have shown that in the limit of ideal
current bias ���1� the statistics of the phase at a contact of
arbitrary transparency corresponds to the Pascal
distribution.18 If the contact transparency is very low �the
case of a tunnel junction� the Pascal distribution is reduced
to the chi-square distribution. One can check that this fully
agrees with our analysis, and the obtained full phase statis-
tics corresponds to the chi-square distribution for phase
probability.

Short-time limit

The full phase statistics for short time intervals directly
follows from a plausible assumption that the voltage does not
vary during the observation time. This means that the gener-
ating function F���� for the phase is equal to the generating
function Fv��� for the voltage, Eq. �14�, with �=�t /�, as
directly proved for an ideal voltage bias in Sec. III.

A more detailed analysis shows that the crossover be-
tween the long-time and the short-time behavior is governed
by the relaxation time �̃=CRRT / �RT+R�. This time is differ-
ent from the relaxation time �=RC, which characterizes the
electron transport in the circuit between tunneling events.
The two relaxation times coincide only in the ideal-voltage-
bias limit.

VI. COUNTING STATISTICS

In order to find the full counting statistics we introduce
the density Pn�V , t� of probability that, during the time inter-
val t, n electrons tunneled through the junction and that in
the end of the interval the voltage at the shunt is V. The
master equation for this probability is

�Pn�V,t�
�t

−
1

RC

d

dV
�VPn�V,t�� +

1

eRT
��VT −

e

2C
�Pn�V,t�

− �VT +
e

2C
�Pn−1�V −

e

C
,t�� = 0. �33�

Let us introduce the generating function:

Fcv��,�,t� = �
n

e�n
 e�vPn�V,t�dV . �34�

The Laplace transform of the equation for the generating
function is �the dimensionless time variable t̃= t /RC was
used�

sFcv��,�,s� +
dFcv��,�,s�

d�
�� + ��e�+� − 1��

− v0��e�+� − 1�Fcv��,�,s� = Fcv��,�,t��t=0. �35�

The left-hand side of this equation is identical to the left-
hand side of Eq. �20� after transformation �=�+�. The full
counting statistics corresponds to the limit �→0. Eventually
the generating function can be easily obtained from Eq. �25�
for the full phase statistics:

Fc��,s� = F0��,0,s�

�1+�

0 Fv��� + x,x,t��t=0

�− � + x + ��ex − 1��F0��,x,s�
dx .

�36�

Long times

The only difference between the phase statistics and the
full counting statistics appears in the initial boundary condi-
tion. Since for the long-time asymptotics, the initial bound-
ary condition is not essential, in this limit the cumulants for
the full counting statistics can be obtained from those for the
full phase statistics �Eqs. �30� and �31�� by simple rescaling.
Namely, the relation between two types of cumulants is
��nk��= ���k��= ���k�� /rk. This relation was derived by Kin-
dermann et al.,5 but it was approximate in their quantum-
mechanical analysis. In our purely classical approach, this
relation is exact.

Short times

In analogy with the short-time limit �t� �̃� of the phase
statistics, we use the fact that the voltage does not vary es-
sentially during the time t. If one considers a subensemble of
realizations, which correspond to some fixed voltage VT at
the junction during the time interval t, the distribution of
numbers of tunneling events is Poissonian and the generating
function is given by Eq. �1�. But one should take into ac-
count that the voltage VT at the junction fluctuates. Thus one
should average over VT=V0−V, and the generating function
is given by

Fc��,t� =
 e�VTt/eRT��e�−1�P�VT�dVT

=
 e��V0−V�t/eRT�e�−1�P�V�dV . �37�

One can see that the generating function for the counting
statistics is directly connected with the generating function
for the voltage, Eq. �11�:

Fc��,t� = e�V0�t/eRT�e�−1�Fv��̃� , �38�

where

�̃ = −
t

RTC
�e� − 1� . �39�

This allows us to obtain expressions for any cumulant of the
full counting statistics using the expressions for voltage cu-
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mulants, Eq. �15�. The first three of them are

��n�� =
dln Fc

d�
=

V0t

eRT
+

d ln Fv

d�̃

d�̃

d�
�40�

=
V0t

eRT
− ��V��

C

e

t

RTC
=

It

e
, �41�

��n2�� =
d2lnFc

d�2 =
V0t

eRT
+

dlnFv

d�̃

d2�̃

d�2 +
d2lnFv

d�̃2 � d�̃

d�
�2

=
V0t

eRT
− ��V��

C

e

t

RTC
+ ��V2��

C2

e2 � t

RTC
�2

=
It

e
�1 +

t

�̃

�2

2�1 + ��2� , �42�

��n3�� =
d3lnFc

d�3 =
V0t

eRT
e� +

dlnFv

d�̃

d3�̃

d�3 + 3
d2lnFv

d�̃2

d2�̃

d�2

d�̃

d�

+
d3lnFv

d�̃3 � d�̃

d�
�3

→
It

e
+ 3��V2��

C2

e2 � t

RTC
�2

− ��V3��
C3

e3 � t

RTC
�3

=
It

e
�1 +

t

�̃

3�2

2�1 + ��2 − � t

�̃
�2�3�2 − ��

6�1 + ��4� .

�43�

These expressions demonstrate that at short times t� �̃
=CRRT / �RT+R� the counting statistics becomes Poissonian
even in the limit of current bias �→	. Thus, the circuit
�environment� effects for short times are not so essential as
for long times. It is worthwhile to note that “short” times
t� �̃ in reality are not necessarily short compared with the
average time e / I between tunneling events since we consider
the case of high currents I, and very many electrons may
tunnel during the “short” time t� �̃.

VII. NUMERICAL SIMULATION

In our computational model, the time dependence of
charge Q�t�=CVT�t� on the junction with capacitance C is
obtained by integrating the equation

dQ

dt
=

V0 − Q/C

R
− �dQ

dt
�

T
, �44�

where the first term on the right represents charge relaxation
through the shunt resistor R, and the latter term represents
tunneling current in the tunnel junction. According to Sec. II,
at VT�e /2C the average tunneling rate �dQI /dtT� is �Q /e
−1/2� /RC. Employing standard Monte Carlo methods, this
average rate is used to generate tunneling events, which are
considered to take place instantaneously on the time scales of
other processes. A ready-made, Mersenne-Twisters-type ran-
dom number generator19 was employed in our FORTRAN

code.

The simulation was performed using parameter values
close to standard mesoscopic tunnel junctions, namely RT
=10 k� and C=1 fF which corresponds to a Coulomb volt-
age of e /2C�0.1 mV. We used V0=5 mV for the bias volt-
age, while the length of the time record was typically set to
1 ns. With these values our time trace displayed altogether a
few hundred tunneling events. The relaxation rate �̃
=CRRT / �RT+R� normally does not exceed 10 ps, and our
simulation is basically in the long time limit discussed in
Secs. V and VI. The time step in the integration was �t
=10−14–10−13 s. The simulation was initialized for 50 000
iterations before starting the calculation of the actual time
traces. For making distributions, the calculation was repeated
for 5–10�105 times using the previous simulation as an
initialization for the next one.

Figure 2 characterizes the skewness of the distribution of
the voltage V over the shunt resistor obtained in our simula-

FIG. 3. Illustration of phase statistics over the shunt resistor in
terms of the ratio ���3�� / ���2��. The solid curve is calculated using
Eqs. �31� and �32�. The inset displays a magnification of the initial
part of the data.

FIG. 2. �Color online� Skewness of the voltage distribution over
the shunt resistor as a function of �=R /RT. The solid curve is
calculated using Eq. �15�. The inset displays the probability distri-
bution P�V� for voltage at �=0.5 in arbitrary units.
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tions. The inset displays the logarithm of a voltage distribu-
tion ln P�V�, calculated at �=0.5. The asymmetry is clearly
visible in the wings of the ln P�V�-curve. The solid curve
depicts the theoretical curve for ��V3�� obtained from Eq.
�15�. The master equation approach is seen to agree with the
Monte Carlo simulation within the scatter of the data points.

Phase ��t� was calculated from the simulated voltage
trace by numerically evaluating 
dtV�t� using a three-point
Simpson rule. Figure 3 displays the result for the ratio
���3�� / ���2��; we have chosen this ratio as both the nomina-
tor and the denominator are proportional to I, eliminating the
bias dependence off from it. The behavior at small values of
� is illustrated in the inset in more detail. The simulated data
are seen to display a change of sign in a similar manner as in
the analytical theory at �=0.5. Notice that the functional
dependence here coincides with the current fluctuation re-
sults in the low-frequency limit.5

Figure 4 illustrates the ratio of the skewness to the vari-
ance for the counting statistics as a function of the parameter
� in the long-time limit, i.e. when the length of the time trace
exceeds the relaxation time �̃=CRRT / �RT+R�. In general, we
find a good agreement between our Monte Carlo simulation
and the ratio calculated from Eqs. �31� and �32� with help of
the relation ��nk��= ���k�� /rk, except for a small offset at �
�2. The inset magnifies the results at ��1.5: the data on
��n3�� / ��n2�� is seen to approach the Poisson result
��n3�� / ��n2��=1 as expected when �→0.

VIII. CONCLUSIONS

Our classical approach based on the master equation pro-
vides the full statistics of electron transport through a normal
junction in a high-impedance circuit. In addition to the full
counting statistics, the statistics of voltage and phase at the
shunt resistor was found. The analysis is valid for observa-
tion times both long and short compared to the circuit relax-
ation time. The results are in full agreement with the results
of the quantum-mechanical analysis performed in the long-
time limit.5 In particular, the crossover of full counting sta-
tistics from the Poissonian in the voltage-biased limit to the
chi-square distribution in the current-biased case was ob-
tained. The identity of counting statistics and phase statistics,
which was found as an approximate result of the quantum-
mechanical analysis,5 was proven to be exact within classical
approach. Our analysis shows that strong environment �cir-
cuit� effects on counting statistics become much weaker at
short time scales �high frequencies�. We have performed nu-
merical simulations using Monte-Carlo methods, which fully
agree with our analytical results.

As we already mentioned in the introduction, measure-
ment of voltage fluctuations over a shunt resistor is the stan-
dard method in noise spectroscopy.6,7 But in order to directly
compare these measurements with our present analysis of
voltage statistics, the bandwidth of voltage measurements
should exceed the inverse relaxation time of the circuit.20

However, direct access to voltage distributions, even for high
impedance circuits, can be achieved using an on-chip noise
detector. This works, for example, by exposing a Coulomb
blockaded Josephson junction to the noise of the circuit and
measuring the current through the junction as a function of
the voltage drop on the shunt.21 Phase statistics, on the other
hand, can be determined in this scheme when the detector
junction is made superconducting with a resistive environ-
ment of R�RQ=6.5 k�.21 In short, we believe that our
analysis of full statistics of electron tunneling �or its possible
extension for more concrete experimental situations� can be
checked by a careful choice of the proper experimental
scheme.
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