2,275 research outputs found

    On Killing vectors in initial value problems for asymptotically flat space-times

    Get PDF
    The existence of symmetries in asymptotically flat space-times are studied from the point of view of initial value problems. General necessary and sufficient (implicit) conditions are given for the existence of Killing vector fields in the asymptotic characteristic and in the hyperboloidal initial value problem (both of them are formulated on the conformally compactified space-time manifold)

    Closing the gap between spatial and spin dynamics of electrons at the metal-to-insulator transition

    Get PDF
    We combine extensive precision measurements of the optically detected spin dynamics and magneto-transport measurements in a contiguous set of n-doped bulk GaAs structures in order to unambiguously unravel the intriguing but complex contributions to the spin relaxation at the metal-to-insulator transition (MIT). Just below the MIT, the interplay between hopping induced loss of spin coherence and hyperfine interaction yields a maximum spin lifetime exceeding 800~ns. At slightly higher doping concentrations, however, the spin relaxation deviates from the expected Dyakonov-Perel mechanism which is consistently explained by a reduction of the effective motional narrowing with increasing doping concentration. The reduction is attributed to the change of the dominant momentum scattering mechanism in the metallic impurity band where scattering by local conductivity domain boundaries due to the intrinsic random distribution of donors becomes significant. Here, we fully identify and model all intricate contributions of the relevant microscopic scattering mechanisms which allows the complete quantitative modeling of the electron spin relaxation in the entire regime from weakly interacting up to fully delocalized electrons

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90∘^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    GHz Spin Noise Spectroscopy in n-Doped Bulk GaAs

    Get PDF
    We advance spin noise spectroscopy to an ultrafast tool to resolve high frequency spin dynamics in semiconductors. The optical non-demolition experiment reveals the genuine origin of the inhomogeneous spin dephasing in n-doped GaAs wafers at densities at the metal-to-insulator transition. The measurements prove in conjunction with depth resolved spin noise measurements that the broadening of the spin dephasing rate does not result from thermal fluctuations or spin-phonon interaction, as previously suggested, but from surface electron depletion

    Theory for Spin-Polarized Oscillations in Nonlinear Magneto-Optics due to Quantum Well States

    Full text link
    Using an electronic tight-binding theory we calculate the nonlinear magneto-optical response from an x-Cu/1Fe/Cu(001) film as a function of frequency and Cu overlayer thickness (x=3 ... 25). We find very strong spin-polarized quantum well oscillations in the nonlinear magneto-optical Kerr effect (NOLIMOKE). These are enhanced by the large density of Fe dd states close to the Fermi level acting as intermediate states for frequency doubling. In good agreement with experiment we find two oscillation periods of 6-7 and 11 monolayers the latter being more pronounced.Comment: 12 pages, Revtex, 3 postscript figure
    • …
    corecore