131 research outputs found

    A note on irreducible maps with several boundaries

    Get PDF
    We derive a formula for the generating function of d-irreducible bipartite planar maps with several boundaries, i.e. having several marked faces of controlled degrees. It extends a formula due to Collet and Fusy for the case of arbitrary (non necessarily irreducible) bipartite planar maps, which we recover by taking d=0. As an application, we obtain an expression for the number of d-irreducible bipartite planar maps with a prescribed number of faces of each allowed degree. Very explicit expressions are given in the case of maps without multiple edges (d=2), 4-irreducible maps and maps of girth at least 6 (d=4). Our derivation is based on a tree interpretation of the various encountered generating functions.Comment: 18 pages, 8 figure

    More on the O(n) model on random maps via nested loops: loops with bending energy

    Full text link
    We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows to express the partition function of the O(n) loop model as a specialization of the multivariate generating function of maps with controlled face degrees, where the face weights are determined by a fixed point condition. We deduce a functional equation for the resolvent of the model, involving some ring generating function describing the immediate vicinity of the loops. When the ring generating function has a single pole, the model is amenable to a full solution. Physically, such situation is realized upon considering loops visiting triangles only and further weighting these loops by some local bending energy. Our model interpolates between the two previously solved cases of triangulations without bending energy and quadrangulations with rigid loops. We analyze the phase diagram of our model in details and derive in particular the location of its non-generic critical points, which are in the universality classes of the dense and dilute O(n) model coupled to 2D quantum gravity. Similar techniques are also used to solve a twisting loop model on quadrangulations where loops are forced to make turns within each visited square. Along the way, we revisit the problem of maps with controlled, possibly unbounded, face degrees and give combinatorial derivations of the one-cut lemma and of the functional equation for the resolvent.Comment: 40 pages, 9 figures, final accepted versio

    Statistics of planar graphs viewed from a vertex: A study via labeled trees

    Full text link
    We study the statistics of edges and vertices in the vicinity of a reference vertex (origin) within random planar quadrangulations and Eulerian triangulations. Exact generating functions are obtained for theses graphs with fixed numbers of edges and vertices at given geodesic distances from the origin. Our analysis relies on bijections with labeled trees, in which the labels encode the information on the geodesic distance from the origin. In the case of infinitely large graphs, we give in particular explicit formulas for the probabilities that the origin have given numbers of neighboring edges and/or vertices, as well as explicit values for the corresponding moments.Comment: 36 pages, 15 figures, tex, harvmac, eps

    Generalized Lorentzian Triangulations and the Calogero Hamiltonian

    Full text link
    We introduce and solve a generalized model of 1+1D Lorentzian triangulations in which a certain subclass of outgrowths is allowed, the occurrence of these being governed by a coupling constant \beta. Combining transfer matrix-, saddle point- and path integral techniques we show that for \beta<1 it is possible to take a continuum limit in which the model is described by a 1D quantum Calogero Hamiltonian. The coupling constant \beta survives the continuum limit and appears as a parameter of the Calogero potential.Comment: 47 pages, 5 figures, tex, harvmac, epsf. New title, new introduction, uses a more Stat. Mech. oriented languag

    Planar maps as labeled mobiles

    Full text link
    We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences, to obtain a bijection with a new class of labeled trees, which we call mobiles. Our bijection covers all the classes of maps previously enumerated by either the two-matrix model used by physicists or by the bijection with blossom trees used by combinatorists. Our bijection reduces the enumeration of maps to that, much simpler, of mobiles and moreover keeps track of the geodesic distance within the initial maps via the mobiles' labels. Generating functions for mobiles are shown to obey systems of algebraic recursion relations.Comment: 31 pages, 17 figures, tex, lanlmac, epsf; improved tex

    Effects of Self-Avoidance on the Tubular Phase of Anisotropic Membranes

    Get PDF
    We study the tubular phase of self-avoiding anisotropic membranes. We discuss the renormalizability of the model Hamiltonian describing this phase and derive from a renormalization group equation some general scaling relations for the exponents of the model. We show how particular choices of renormalization factors reproduce the Gaussian result, the Flory theory and the Gaussian Variational treatment of the problem. We then study the perturbative renormalization to one loop in the self-avoiding parameter using dimensional regularization and an epsilon-expansion about the upper critical dimension, and determine the critical exponents to first order in epsilon.Comment: 19 pages, TeX, uses Harvmac. Revised Title and updated references: to appear in Phys. Rev.

    Integrable 2D Lorentzian Gravity and Random Walks

    Get PDF
    We introduce and solve a family of discrete models of 2D Lorentzian gravity with higher curvature, which possess mutually commuting transfer matrices, and whose spectral parameter interpolates between flat and curved space-times. We further establish a one-to-one correspondence between Lorentzian triangulations and directed Random Walks. This gives a simple explanation why the Lorentzian triangulations have fractal dimension 2 and why the curvature model lies in the universality class of pure Lorentzian gravity. We also study integrable generalizations of the curvature model with arbitrary polygonal tiles. All of them are found to lie in the same universality class
    corecore