460 research outputs found

    Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS)

    Get PDF
    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction

    Evidence for partial quenching of orbital angular momentum upon complex formation in the infrared spectrum of OH-acetylene

    Get PDF
    The entrance channel leading to the addition reaction between the hydroxyl radical and acetylene has been examined by spectroscopic characterization of the asymmetric CH stretching band of the π-hydrogen bonded OH-acetylene reactant complex. The infrared action spectrum observed at 3278.6 cm−1 (origin) consists of seven peaks of various intensities and widths, and is very different from those previously reported for closed-shell HF/HCl-acetylene complexes. The unusual spectrum arises from a partial quenching of the OH orbital angular momentum in the complex, which in turn is caused by a significant splitting of the OH monomer orbital degeneracy into 2A′ and 2A″ electronic states. The magnitude of the 2A′−2A″ splitting as well as the A rotational constant for the OH-acetylene complex are determined from the analysis of this b-type infrared band. The most populated OH product rotational state, jOH = 9/2, is consistent with intramolecular vibrational energy transfer to the ν2 C≡C stretching mode of the departing acetylene fragment. The lifting of the OH orbital degeneracy and partial quenching of its electronic orbital angular momentum indicate that the electronic changes accompanying the evolution of reactants into products have begun to occur in the reactant complex

    The activity of employer unions in perspective

    Get PDF
    As two of the employer representatives thanked by the authors of the article The inactivitesof employer unions by P Brosnan. P Walsh and P Rowe for their advice. we are prevented by modesty (and other sentiment) from bearing the burden of any credit for its contents and interpretations

    Infrared spectrum and stability of a π-type hydrogen-bonded complex between the OH and C2H2 reactants

    Get PDF
    A hydrogen-bonded complex between the hydroxyl radical and acetylene has been stabilized in the reactant channel well leading to the addition reaction and characterized by infrared action spectroscopy in the OH overtone region. Analysis of the rotational band structure associated with the a-type transition observed at 6885.53(1) cm−1 (origin) reveals a T-shaped structure with a 3.327(5) Å separation between the centers of mass of the monomer constituents. The OH (v = 1) product states populated following vibrational predissociation show that dissociation proceeds by two mechanisms: intramolecular vibrational to rotational energy transfer and intermolecular vibrational energy transfer. The highest observed OH product state establishes an upper limit of 956 cm−1 for the stability of the π-type hydrogen-bonded complex. The experimental results are in good accord with the intermolecular distance and well depth at the T-shaped minimum energy configuration obtained from complementary ab initio calculations, which were carried out at the restricted coupled cluster singles, doubles, noniterative triples level of theory with extrapolation to the complete basis set limit

    (2+1) Resonance Enhanced Ionization Spectroscopy of a State Selected Beam of OH Radicals

    Get PDF
    A state-selected beam of hydroxyl radicals is generated using a pulsed discharge source and hexapole field. The OH radicals are characterized by resonance-enhanced multiphoton ionization (REMPI) spectroscopy via the nested D  and 3  Rydberg states. Simplified spectra are observed from the selected ∣MJ∣ = 3/2 component of the upper Λ-doublet level of the lowest rotational state (J = 3/2) in ground (v″ = 0) and excited(v″ = 1–3) vibrational levels of the OH X  state. Two-photon transitions are observed to the D (v′ = 0–3) and 3 (v′ = 0,1) vibronic levels, extending previous studies to higher vibrational levels of the Rydberg states. Spectroscopic constants are derived for the Rydberg states and compared with prior experimental studies. Complementary first-principle theoretical studies of the D  and 3  Rydberg states [see M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 123, 074310 (2005), following paper ] are used to interpret the experimental findings and examine the utility of the (2+1) REMPI scheme for sensitive detection of OH radicals

    Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    Get PDF
    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300– 700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation

    Macrostructural Analyses of Cinderella Narratives in a Large Nonclinical Sample

    Get PDF
    Purpose: Macrostructural narrative analyses are important clinical measures, revealing age-related declines and disorder-related impairments in the accuracy, completeness, logical sequencing, and organization of content. The current study aims to provide preliminary data on typical aging and psychometric evidence supporting multilevel Main Concept, Sequencing, and Story Grammar (MSSG) analyses that capture these aspects of narratives. Method: Transcripts of Cinderella narratives for 92 healthy control participants stratified across four age brackets from the online database AphasiaBank were coded by Richardson and Dalton (2016) for main concept (MC) analysis. In the current study, MSSG analyses were completed for (a) logical sequencing, independently and in combination with Mc accuracy and completeness (MC + sequencing), and (b) story grammar organization (i.e., inclusion of episodic components and complexity of episodes). Interrater agreement (99%-100%) revealed highly reliable scoring. Results: Descriptive statistics for the typically aging sample are presented for sequencing, MC + sequencing, total episodic components, and episodic complexity. Scores for participants over 60 years of age were lower (poorer) than scores for those 20-59 years of age, supporting the construct validity of score use for identifying age-related declines in performance. Conclusions: This study\u27s novel MSSG analyses of narrative production efficiently assess the logical sequencing and story grammar organization of content in healthy controls. Preliminary reliability and validity evidence support the use of all scores to measure age-related changes in narrative macrostructure. Data from this typically aging sample provide a foundation for future research and clinical assessment aimed at quantifying narrative deficits in adults with communication disorders

    Photodissociation of the OD radical at 226 and 243 nm

    Get PDF
    The photodissociation dynamics of state selected OD radicals has been examined at 243 and 226 nm using velocity map imaging to probe the angle–speed distributions of theD(2S) and O(3P2) products. Both experiment and complementary first principle calculations demonstrate that photodissociation occurs by promotion of OD from high vibrational levels of the ground X 2Π state to the repulsive 1 2Σ− state

    Tsunami observations by coastal ocean radar

    Get PDF
    When tsunami waves propagate across the open ocean, they are steered by the Coriolis effect and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes nonlinear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. High frequency (HF) coastal ocean radar is well conditioned to observe the surface current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50 to 200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2 to 30 minutes. Wavelengths for tsunamis (in 500 to 3000m depth) are in the range 8.5 to over 200 km, and on a shelf where the depth is about 50m (as in the Great Barrier Reef (GBR)) the wavelengths are in the range 2.5 to 30 km. In the use of HF radar technology, there is a trade-off between the precision of surface current speed measurements and time resolution. It is shown that the phased array HF ocean surface radar being deployed in the GBR and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20 to 30 minutes and in the wavelength range greater than about 6 km. An advantage in signal-to-noise ratio can be obtained from the prior knowledge of the spatial pattern of the squirts at the edge of the continental shelf, and it is estimated that, with this analysis, the time resolution of the GBR radar may be reduced to about 2.5 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5 to 30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of about 2.5 cm in the open ocean. This means that the GBR HF radar is well conditioned for use as a monitor of small, as well as larger, tsunamis and has the potential to contribute to the understanding of tsunami genesis research
    corecore