502 research outputs found

    Theoretical determination of the Raman spectra of MgSiO3 perovskite and post-perovskite at high pressure

    Full text link
    We use the density functional perturbation theory to determine for the first time the pressure evolution of the Raman intensities for a mineral, the two high-pressure structures of MgSiO3 perovskite and post-perovskite. At high pressures, the Raman powder spectra reveals three main peaks for the perovskite structure and one main peak for the post-perovskite structure. Due to the large differences in the spectra of the two phases Raman spectroscopy can be used as a good experimental indication of the phase transition.Comment: 16 pages, submitted to Geophysical Research Letter

    Thermal conduction of carbon nanotubes using molecular dynamics

    Full text link
    The heat flux autocorrelation functions of carbon nanotubes (CNTs) with different radius and lengths is calculated using equilibrium molecular dynamics. The thermal conductance of CNTs is also calculated using the Green-Kubo relation from the linear response theory. By pointing out the ambiguity in the cross section definition of single wall CNTs, we use the thermal conductance instead of conductivity in calculations and discussions. We find that the thermal conductance of CNTs diverges with the CNT length. After the analysis of vibrational density of states, it can be concluded that more low frequency vibration modes exist in longer CNTs, and they effectively contribute to the divergence of thermal conductance.Comment: 15 pages, 6 figures, submitted to Physical Review

    Coulomb interaction and ferroelectric instability of BaTiO3

    Full text link
    Using first-principles calculations, the phonon frequencies at the Γ\Gamma point and the dielectric tensor are determined and analysed for the cubic and rhombohedral phases of BaTiO3_{3}. The dipole-dipole interaction is then separated \`a la Cochran from the remaining short-range forces, in order to investigate their respective influence on lattice dynamics. This analysis highlights the delicate balance of forces leading to an unstable phonon in the cubic phase and demonstrates the extreme sensitivity of this close compensation to minute effective charge changes. Within our decomposition, the stabilization of the unstable mode in the rhombohedral phase or under isotropic pressure has a different origin.Comment: 9 pages, 4 tables, 1 figur

    Theory of structural response to macroscopic electric fields in ferroelectric systems

    Full text link
    We have developed and implemented a formalism for computing the structural response of a periodic insulating system to a homogeneous static electric field within density-functional perturbation theory (DFPT). We consider the thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with respect to the internal structural parameters R and unit cell strain eta yields the equilibrium structure at fixed electric field e and polarization P, respectively. First-order expansion of E(R,eta,e) in e leads to a useful approximation in which R(P) and eta(P) can be obtained by simply minimizing the zero-field internal energy with respect to structural coordinates subject to the constraint of a fixed spontaneous polarization P. To facilitate this minimization, we formulate a modified DFPT scheme such that the computed derivatives of the polarization are consistent with the discretized form of the Berry-phase expression. We then describe the application of this approach to several problems associated with bulk and short-period superlattice structures of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects of compositionally broken inversion symmetry, the equilibrium structure for high values of polarization, field-induced structural phase transitions, and the lattice contributions to the linear and the non-linear dielectric constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm

    Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory

    Full text link
    The non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements is discussed in the framework of density functional perturbation theory. The approach is based on the 2n + 1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the calculation of the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives are examined and their convergence with respect to the k-point sampling is discussed. We apply our method to a few simple cases and compare our results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the EO coefficients and non-linear optical susceptibilities

    Ab initio studies of phonon softening and high pressure phase transitions of alpha-quartz SiO2

    Full text link
    Density functional perturbation theory calculations of alpha-quartz using extended norm conserving pseudopotentials have been used to study the elastic properties and phonon dispersion relations along various high symmetry directions as a function of bulk, uniaxial and non-hydrostatic pressure. The computed equation of state, elastic constants and phonon frequencies are found to be in good agreement with available experimental data. A zone boundary (1/3, 1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around the same pressure, studies of the Born stability criteria reveal that the structure is mechanically unstable. The phonon and elastic softening are related to the high pressure phase transitions and amorphization of quartz and these studies suggest that the mean transition pressure is lowered under non-hydrostatic conditions. Application of uniaxial pressure, results in a post-quartz crystalline monoclinic C2 structural transition in the vicinity of the K-point instability. This structure, intermediate between quartz and stishovite has two-thirds of the silicon atoms in octahedral coordination while the remaining silicon atoms remain tetrahedrally coordinated. This novel monoclinic C2 polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. The possible role of high pressure ferroelastic phases in causing pressure induced amorphization in silica are discussed.Comment: 17 pages, 8 figs., 8 Table

    The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table

    Full text link
    First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm- conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high accuracy. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70.000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table

    Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation

    Full text link
    Within the Tamm-Dancoff approximation ab initio approaches describe excitons as packets of electron-hole pairs propagating only forward in time. However, we show that in nanoscale materials excitons and plasmons hybridize, creating exciton--plasmon states where the electron-hole pairs oscillate back and forth in time. Then, as exemplified by the trans-azobenzene molecule and carbon nanotubes, the Tamm-Dancoff approximation yields errors as large as the accuracy claimed in ab initio calculations. Instead, we propose a general and efficient approach that avoids the Tamm--Dancoff approximation, and correctly describes excitons, plasmons and exciton-plasmon states

    Ab initio phonon dispersion curves and interatomic force constants of barium titanate

    Full text link
    The phonon dispersion curves of cubic BaTiO_3 have been computed within a first-principles approach and the results compared to the experimental data. The curves obtained are very similar to those reported for KNbO_3 by Yu and Krakauer [Phys. Rev. Lett. 74, 4067 (1995)]. They reveal that correlated atomic displacements along chains are at the origin of the ferroelectric instability. A simplified model illustrates that spontaneous collective displacements will occur when a dozen of aligned atoms are coupled. The longitudinal interatomic force constant between nearest neighbour Ti and O atoms is relatively weak in comparison to that between Ti atoms in adjacent cells. The small coupling between Ti and O displacements seems however necessary to reproduce a ferroelectric instability.Comment: 12 pages, 4 figure

    First-principles study of the electrooptic effect in ferroelectric oxides

    Full text link
    We present a method to compute the electrooptic tensor from first principles, explicitly taking into account the electronic, ionic and piezoelectric contributions. It allows us to study the non-linear optic behavior of three ferroelectric ABO_3 compounds : LiNbO_3, BaTiO_3 and PbTiO_3. Our calculations reveal the dominant contribution of the soft mode to the electrooptic coefficients in LiNbO_3 and BaTiO_3 and identify the coupling between the electric field and the polar atomic displacements along the B-O chains as the origin of the large electrooptic response in these compounds.Comment: accepted for publication in Phys. Rev. Let
    corecore