6,771 research outputs found
Acetylene terminated matrix resins
The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications
Interference in Bohmian Mechanics with Complex Action
In recent years, intensive effort has gone into developing numerical tools
for exact quantum mechanical calculations that are based on Bohmian mechanics.
As part of this effort we have recently developed as alternative formulation of
Bohmian mechanics in which the quantum action, S, is taken to be complex [JCP
{125}, 231103 (2006)]. In the alternative formulation there is a significant
reduction in the magnitude of the quantum force as compared with the
conventional Bohmian formulation, at the price of propagating complex
trajectories. In this paper we show that Bohmian mechanics with complex action
is able to overcome the main computational limitation of conventional Bohmian
methods -- the propagation of wavefunctions once nodes set in. In the vicinity
of nodes, the quantum force in conventional Bohmian formulations exhibits rapid
oscillations that pose severe difficulties for existing numerical schemes. We
show that within complex Bohmian mechanics, multiple complex initial conditions
can lead to the same real final position, allowing for the description of nodes
as a sum of the contribution from two or more crossing trajectories. The idea
is illustrated on the reflection amplitude from a one-dimensional Eckart
barrier. We believe that trajectory crossing, although in contradiction to the
conventional Bohmian trajectory interpretation, provides an important new tool
for dealing with the nodal problem in Bohmian methods
Design of a Minimum Surface-Effect Three Degree-of-Freedom Micromanipulator
This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision contro
- …