12 research outputs found

    The relationship between various measures of obesity and arterial stiffness in morbidly obese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is associated with increased risk of cardiovascular disease. Arterial stiffness assessed by carotid femoral pulse wave velocity (PWV) is an independent predictor of cardiovascular morbidity and mortality. We aimed to investigate how various measures of body composition affect arterial stiffness.</p> <p>Methods</p> <p>This is an analysis of cross-sectional baseline data from a controlled clinical trial addressing changes in arterial stiffness after either surgery or lifestyle intervention in a population of morbidly obese patients. High-fidelity applanation tonometry (Millar<sup>®</sup>, Sphygmocor<sup>®</sup>) was used to measure pulse wave velocity (PWV). Carotid femoral PWV is a direct measure of arterial stiffness and is considered to be the gold standard method. The Inbody 720 Body Composition Analyzer was used for bioelectrical impedance analysis (BIA). Spearman's correlation, independent samples <it>t</it>-test, chi-square tests, Fisher's exact test and multiple linear regression analyses were used as statistical methods.</p> <p>Results</p> <p>A total of 133 patients (79 women), with a mean (SD) age of 43 (11) years were included in the study. Men had a significantly higher prevalence of obesity related comorbidities and significantly higher PWV, 9.1 (2.0) m/s vs. 8.1 (1.8) m/s, p = 0.003, than women. In the female group, PWV was positively correlated with WC, WHtR, BMI and visceral fat area. In the male group, PWV was negatively correlated with BMI. Multiple linear regression analysis showed that increasing BMI, WC, WHtR, visceral fat area and fat mass were independently associated with higher PWV in women, but not in men, after adjustment for age, hypertension and type 2 diabetes.</p> <p>Conclusion</p> <p>Most measures of general and abdominal obesity were predictors of arterial stiffness in female morbidly obese patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT00626964">NCT00626964</a></p

    The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis

    No full text
    Physical activity has been associated with reduced oxidative stress (OS) in observational studies and clinical trials. The purpose of this systematic review and meta-analysis of controlled trials was to determine the effect of physical exercise on OS parameters. We conducted a systematic review of the literature up to March 2016 that included the following databases: PubMed, SCOPUS, and Web of Science. A keyword combination referring to exercise training and OS was included as part of a more thorough search process. We also manually searched the reference lists of the articles. From an initial 1573 references, we included 30 controlled trials (1346 participants) in the qualitative analysis, 19 of which were included in the meta-analysis. All trials were conducted in humans and had at least one exercise intervention and a paired control group. Using a standardized protocol, two investigators independently abstracted data on study design, sample size, participant characteristics, intervention, follow-up duration, outcomes, and quantitative data for the meta-analysis. Thus, the investigators independently assigned quality scores with a methodological quality assessment (MQA). The agreement level between the reviewers was 85.3 %. Discrepancies were solved in a consensus meeting. The MQA showed a total score in the quality index between 40 and 90 % and a mean quality of 55 %. Further, in a random-effects model, data from each trial were pooled and weighted by the inverse of the total variance. Physical training was associated with a significant reduction in pro-oxidant parameters (standard mean difference [SMD] -1.08; 95 % confidence interval [CI] -1.57 to -0.58; p < 0.001) and an increase in antioxidant capacity (SMD 1.45; 95 % CI 0.83-2.06; p < 0.001). The pooled analysis revealed that regardless of intensity, volume, type of exercise, and studied population, the antioxidant indicators tended to increase and pro-oxidant indicators tended to decrease after training. Therefore, we conclude that exercise training seems to induce an antioxidant effect. Thus, it is suggested that people practice some kind of exercise to balance the redox state, regardless of their health status, to improve health-related outcomes
    corecore