3,171 research outputs found

    Apparatus for purging systems handling toxic, corrosive, noxious and other fluids Patent

    Get PDF
    Fluid transferring system design for purging toxic, corrosive, or noxious fluids and fumes from materials handling equipment for cleansing and accident preventio

    Work-group cohesion in stable and closing manufacturing plants

    Get PDF

    Soft Mode Dynamics Above and Below the Burns Temperature in the Relaxor Pb(Mg_1/3Nb_2/3)O_3

    Full text link
    We report neutron inelastic scattering measurements of the lowest-energy transverse optic (TO) phonon branch in the relaxor Pb(Mg_1/3Nb_2/3)O_3 from 400 to 1100 K. Far above the Burns temperature T_d ~ 620 K we observe well-defined propagating TO modes at all wave vectors q, and a zone center TO mode that softens in a manner consistent with that of a ferroelectric soft mode. Below T_d the zone center TO mode is overdamped. This damping extends up to, but not above, the waterfall wave vector q_wf, which is a measure of the average size of the PNR.Comment: 4 pages, 4 figures; modified discussion of Fig. 3, shortened captions, added reference, corrected typos, accepted by Phys. Rev. Let

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Limits to Plasticity in Gray Wolf, Canis lupus, Pack Structure: Conservation Implications for Recovering Populations

    Get PDF
    We documented the dynamics of the Five Corners Pack (FCP) in east-central Minnesota and northwestern Wisconsin through the loss and replacement of four alpha-females over a four-year period. This pack remained intact and produced offspring during the period despite the annual loss of the alpha female. However, we observed a disintegration of the pack after four consecutive alpha females died, at least two of which were due to illegal killing by humans. Our observations generally support the hypothesis that “single-parent” wolf packs may be more prevalent in areas with low densities of wolves and high densities of ungulate prey. Our observations also highlight the need to assess the potential negative impacts of wolf removal on pack structure and persistence at local and regional scales

    Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor

    Full text link
    We have performed a series of neutron diffuse scattering measurements on a single crystal of the solid solution Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) doped with 8% PbTiO3_3 (PT), a relaxor compound with a Curie temperature TC∼450_C \sim 450 K, in an effort to study the change in local polar orders from the polar nanoregions (PNR) when the material enters the ferroelectric phase. The diffuse scattering intensity increases monotonically upon cooling in zero field, while the rate of increase varies dramatically around different Bragg peaks. These results can be explained by assuming that corresponding changes occur in the ratio of the optic and acoustic components of the atomic displacements within the PNR. Cooling in the presence of a modest electric field E⃗\vec{E} oriented along the [111] direction alters the shape of diffuse scattering in reciprocal space, but does not eliminate the scattering as would be expected in the case of a classic ferroelectric material. This suggests that a field-induced redistribution of the PNR has taken place
    • …
    corecore