11 research outputs found

    Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array

    Get PDF
    Intraoral dental tomosynthesis and closely related tuned-aperture CT (TACT) are low-dose three-dimensional (3D) imaging modalities that have shown improved detection of multiple dental diseases. Clinical interest in implementing these technologies waned owing to their time-consuming nature. Recently developed carbon nanotube (CNT) X-ray sources allow rapid multi-image acquisition without mechanical motion, making tomosynthesis a clinically viable technique. The objective of this investigation was to evaluate the feasibility of and produce high-quality images from a digital tomosynthesis system employing CNT X-ray technology

    Characterization and preliminary imaging evaluation of a clinical prototype stationary intraoral tomosynthesis system

    Get PDF
    Purpose: Technological advancements in dental radiography have improved oral care on many fronts, yet diagnostic efficacy for some of the most common oral conditions, such as caries, dental cracks and fractures, and periodontal disease, remains relatively low. Driven by the clinical need for a better diagnostic yield for these and other dental conditions, we initiated the development of a stationary intraoral tomosynthesis (s-IOT) imaging system using carbon nanotube (CNT) x-ray source array technology. Here, we report the system characterization and preliminary imaging evaluation of a clinical prototype s-IOT system approved for human use. Methods: The clinical prototype s-IOT system is comprised of a multibeam CNT x-ray source array, high voltage generator, control electronics, collimator cone, and dynamic digital intraoral detector. During a tomosynthesis scan, each x-ray source is operated sequentially at fixed, nominal tube current of 7 mA and user-specified pulse width. Images are acquired by a digital intraoral detector and the reconstruction algorithm generates slice information in real time for operator review. In this study, the s-IOT system was characterized for tube output, dosimetry, and spatial resolution. Manufacturer specifications were validated, such as tube current, kVp, and pulse width. Tube current was measured with an oscilloscope on the analog output of the anode power supply. Pulse width, kVp, and peak skin dose were measured with a dosimeter with ion chamber and high voltage accessory. In-plane spatial resolution was evaluated via measurement of MTF and imaging of a line pair phantom. Spatial resolution in the depth direction was evaluated via artifact spread measurement. The size of the collimated radiation field was evaluated for compliance with FDA regulations. A dental phantom and human specimens of varying pathologies were imaged on a clinical 2D intraoral imaging system as well as s-IOT for comparison and to explore potential clinical applications. Results: The measured tube current, kVp, and pulse width values were within 3% of the set values. A cumulative peak skin dose of 1.12 mGy was measured for one complete tomosynthesis scan using a 50-ms pulse per projection view. Projection images and reconstruction slices revealed MTF values ranging from 8.1 to 9.3 cycles/mm. Line pair imaging verified this result. The radiation field was found to meet the FDA requirements for intraoral imaging devices. Tomosynthesis reconstruction slice images of the dental phantom and human specimens provided depth resolution, allowing visibility of anatomical features that cannot be seen in the 2D intraoral images. Conclusions: The clinical prototype s-IOT device was evaluated and found to meet all manufacturer specifications. Though the system capability is higher, initial investigations are targeting a low-dose range comparable to a single 2D radiograph. Preliminary studies indicated that s-IOT provides increased image quality and feature conspicuity at a dose comparable to a single 2D intraoral radiograph

    Applying synthetic radiography to intraoral tomosynthesis: A step towards achieving 3D imaging in the dental clinic

    Get PDF
    objectives: A practical approach to three-dimensional (3D) intraoral imaging would have many potential applications in clinical dentistry. Stationary intraoral tomosynthesis (sIOT) is an experimental 3D imaging technology that holds promise. The purpose of this study was to explore synthetic radiography as a tool to improve the clinical utility of the images generated by an sIOT scan. Methods: Extracted tooth specimens containing either caries adjacent to restorations (CAR) or vertical root fractures (VRF) were imaged by sIOT and standard dental radiography devices. Qualitative assessments were used to compare the conspicuity of these pathologies in the standard radiographs and in a set of multi-view synthetic radiographs generated from the information collected by sIOT. Results: The sIOT-based synthetic 2D radiographs contained less artefact than the image slices in the reconstructed 3D stack, which is the conventional approach to displaying information from a tomosynthesis scan. As a single sIOT scan can be used to generate synthetic radiographs from multiple viewing angles, the interproximal space was less likely to be obscured in the synthetic images compared to the standard radiograph. Additionally, the multi-view synthetic radiographs can potentially improve the display of CAR and VRFs as compared to a single standard radiograph. conclusions: This preliminary experience combining synthetic radiography and sIOT in extracted tooth models is encouraging and supports the ongoing study of this promising approach to 3D intraoral imaging with many potential applications

    Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array

    No full text
    OBJECTIVES: Intraoral dental tomosynthesis and closely related tuned-aperture CT (TACT) are low-dose three-dimensional (3D) imaging modalities that have shown improved detection of multiple dental diseases. Clinical interest in implementing these technologies waned owing to their time-consuming nature. Recently developed carbon nanotube (CNT) X-ray sources allow rapid multi-image acquisition without mechanical motion, making tomosynthesis a clinically viable technique. The objective of this investigation was to evaluate the feasibility of and produce high-quality images from a digital tomosynthesis system employing CNT X-ray technology. METHODS: A test-bed stationary intraoral tomosynthesis unit was constructed using a CNT X-ray source array and a digital intraoral sensor. The source-to-image distance was modified to make the system comparable in image resolution to current two-dimensional intraoral radiography imaging systems. Anthropomorphic phantoms containing teeth with simulated and real caries lesions were imaged using a dose comparable to D-speed film dose with a rectangular collimation. Images were reconstructed and analysed. RESULTS: Tomosynthesis images of the phantom and teeth specimen demonstrated perceived image quality equivalent or superior to standard digital images with the added benefit of 3D information. The ability to “scroll” through slices in a buccal–lingual direction significantly improved visualization of anatomical details. In addition, the subjective visibility of dental caries was increased. CONCLUSIONS: Feasibility of the stationary intraoral tomosynthesis is demonstrated. The results show clinical promise and suitability for more robust observer and clinical studies
    corecore