1,540 research outputs found

    Current moments of 1D ASEP by duality

    Full text link
    We consider the exponential moments of integrated currents of 1D asymmetric simple exclusion process using the duality found by Sch\"utz. For the ASEP on the infinite lattice we show that the nnth moment is reduced to the problem of the ASEP with less than or equal to nn particles.Comment: 13 pages, no figur

    The determinant representation for quantum correlation functions of the sinh-Gordon model

    Get PDF
    We consider the quantum sinh-Gordon model in this paper. Using known formulae for form factors we sum up all their contributions and obtain a closed expression for a correlation function. This expression is a determinant of an integral operator. Similar determinant representations were proven to be useful not only in the theory of correlation functions, but also in the matrix models.Comment: 21 pages, Latex, no figure

    The Determinant Representation for a Correlation Function in Scaling Lee-Yang Model

    Get PDF
    We consider the scaling Lee-Yang model. It corresponds to the unique perturbation of the minimal CFT model M(2,5). This is not a unitary model. We used known expression for form factors in order to obtain a closed expression for a correlation function of a trace of energy-momentum tensor. This expression is a determinant of an integral operator. Similar determinant representation were proven to be useful not only for quantum correlation functions but also in matrix models.Comment: 14 pages, LaTeX, no figure

    The Isotropic Radio Background and Annihilating Dark Matter

    Full text link
    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.Comment: 11 pages, 6 figure

    Eigenvalue correlations in non-Hermitean symplectic random matrices

    Full text link
    Correlation function of complex eigenvalues of N by N random matrices drawn from non-Hermitean random matrix ensemble of symplectic symmetry is given in terms of a quaternion determinant. Spectral properties of Gaussian ensembles are studied in detail in the regimes of weak and strong non-Hermiticity.Comment: 14 page

    The mean field theory of spin glasses: the heuristic replica approach and recent rigorous results

    Full text link
    The mathematically correct computation of the spin glasses free energy in the infinite range limit crowns 25 years of mathematic efforts in solving this model. The exact solution of the model was found many years ago by using a heuristic approach; the results coming from the heuristic approach were crucial in deriving the mathematical results. The mathematical tools used in the rigorous approach are quite different from those of the heuristic approach. In this note we will review the heuristic approach to spin glasses in the light of the rigorous results; we will also discuss some conjectures that may be useful to derive the solution of the model in an alternative way.Comment: 12 pages, 1 figure; lecture at the Flato Colloquia Day, Thursday 27 November, 200

    On the Riemann-Hilbert approach to the asymptotic analysis of the correlation functions of the Quantum Nonlinear Schrodinger equation. Non-free fermionic case

    Full text link
    We consider the local field dynamical temperature correlation function of the Quantum Nonlinear Schrodinger equation with the finite coupling constant. This correlation function admits a Fredholm determinant representation. The related operator-valued Riemann--Hilbert problem is used for analysing the leading term of the large time and long distance asymptotics of the correlation function.Comment: 70 pages, Latex, 4 figure

    Equation of state and high-pressure phase transitions in Mg2GeO4 olivine

    Full text link
    Germanates are often used as structural analogs of planetary silicates. We have explored the high-pressure phase relations in Mg2GeO4 using diamond anvil cell experiments combined with synchrotron x-ray diffraction and computations based on density functional theory. Upon room temperature compression, forsterite remains stable up to 30 GPa. At higher pressures, a phase transition to a CmC21 structure was observed, which remained stable to the peak pressure of 105 GPa. Using a 3rd order Birch Murnaghan fit to the experimental data, we obtained V0 = 305.1 (3) A3, K0 = 124.6 (14) GPa and K' = 3.86 (fixed) for forsterite and V0 = 263.5 (15) A3, K0 = 175 (7) GPa and K' = 4.2 (fixed) for the CmC21 phase. In three separate runs, the forsterite sample was compressed to 26 GPa, 54 GPa and 105 GPa respectively and then laser-heated to ~2500 K. On laser heating, a mixture of perovskite MgGeO3 + MgO was found to be stable at the lower pressure conditions, whereas post-perovskite + MgO was observed at the highest pressure

    Parametric level statistics in random matrix theory: Exact solution

    Full text link
    An exact solution to the problem of parametric level statistics in non-Gaussian ensembles of N by N Hermitian random matrices with either soft or strong level confinement is formulated within the framework of the orthogonal polynomial technique. Being applied to random matrices with strong level confinement, the solution obtained leads to emergence of a new connection relation that makes a link between the parametric level statistics and the scalar two-point kernel in the thermodynamic limit.Comment: 4 pages (revtex

    Guest charges in an electrolyte: renormalized charge, long- and short-distance behavior of the electric potential and density profile

    Full text link
    We complement a recent exact study by L. Samaj on the properties of a guest charge QQ immersed in a two-dimensional electrolyte with charges +1/−1+1/-1. In particular, we are interested in the behavior of the density profiles and electric potential created by the charge and the electrolyte, and in the determination of the renormalized charge which is obtained from the long-distance asymptotics of the electric potential. In Samaj's previous work, exact results for arbitrary coulombic coupling β\beta were obtained for a system where all the charges are points, provided βQ<2\beta Q<2 and β<2\beta < 2. Here, we first focus on the mean field situation which we believe describes correctly the limit β→0\beta\to 0 but βQ\beta Q large. In this limit we can study the case when the guest charge is a hard disk and its charge is above the collapse value βQ>2\beta Q>2. We compare our results for the renormalized charge with the exact predictions and we test on a solid ground some conjectures of the previous study. Our study shows that the exact formulas obtained by Samaj for the renormalized charge are not valid for βQ>2\beta Q>2, contrary to a hypothesis put forward by Samaj. We also determine the short-distance asymptotics of the density profiles of the coions and counterions near the guest charge, for arbitrary coulombic coupling. We show that the coion density profile exhibit a change of behavior if the guest charge becomes large enough (βQ≥2−β\beta Q\geq 2-\beta). This is interpreted as a first step of the counterion condensation (for large coulombic coupling), the second step taking place at the usual Manning--Oosawa threshold βQ=2\beta Q=2
    • …
    corecore