286 research outputs found

    Radio Detection of High Energy Particles: Coherence Versus Multiple Scales

    Get PDF
    Radio Cherenkov emission underlines detection of high energy particles via a signal growing like the particle-energy-squared. Cosmic ray-induced electromagnetic showers are a primary application. While many studies have treated the phenomenon approximately, none have attempted to incorporate all the physical scales involved in problems with time- or spatially- evolving charges. We find it is possible to decompose the calculated fields into the product of a form factor, characterizing a moving charge distribution, multiplying a general integral which depends on the charge evolution. In circumstances of interest for cosmic ray physics, the resulting expressions can be evaluated explicitely in terms of a few parameters obtainable from shower codes. The classic issues of Frauhofer and Fresnel zones play a crucial role in the coherence.Comment: 25 pages, 10 figure

    Searching for νμντ\nu_\mu \to \nu_\tau Oscillations with Extragalactic Neutrinos

    Full text link
    We propose a novel approach for studying νμντ\nu_\mu \to \nu_\tau oscillations with extragalactic neutrinos. Active Galactic Nuclei and Gamma Ray Bursts are believed to be sources of ultrahigh energy muon neutrinos. With distances of 100 Mpc or more, they provide an unusually long baseline for possible detection of νμντ\nu_\mu \to \nu_\tau with mixing parameters Δm2\Delta m^2 down to 101710^{-17}eV2^2, many orders of magnitude below the current accelerator experiments. By solving the coupled transport equations, we show that high-energy ντ\nu_\tau's, as they propagate through the earth, cascade down in energy, producing the enhancement of the incoming ντ\nu_\tau flux in the low energy region, in contrast to the high-energy νμ\nu_\mu's, which get absorbed. For an AGN quasar model we find the ντ\nu_\tau flux to be a factor of 2 to 2.5 larger than the incoming flux in the energy range between 10210^2 GeV and 10410^4 GeV, while for a GRB fireball model, the enhancement is 10%-27% in the same energy range and for zero nadir angle. This enhancement decreases with larger nadir angle, thus providing a novel way to search for ντ\nu_\tau appearance by measuring the angular dependence of the muons. To illustrate how the cascade effect and the ντ\nu_\tau final flux depend on the steepness of the incoming ντ\nu_\tau, we show the energy and angular distributions for several generic cases of the incoming tau neutrino flux, Fν0EnF_\nu^0 \sim E^{-n} for n=1,2 and 3.6. We show that for the incoming flux that is not too steep, the signal for the appearance of high-energy ντ\nu_\tau is the enhanced production of lower energy μ\mu and their distinctive angular dependence, due to the contribution from the τ\tau decay into μ\mu just below the detector.Comment: 11 pages, including 4 color figure

    Neutrino Interactions at Ultrahigh Energies

    Get PDF
    We report new calculations of the cross sections for deeply inelastic neutrino-nucleon scattering at neutrino energies between 10^{9}\ev and 10^{21}\ev. We compare with results in the literature and assess the reliability of our predictions. For completeness, we briefly review the cross sections for neutrino interactions with atomic electrons, emphasizing the role of the WW-boson resonance in νˉee\bar{\nu}_{e}e interactions for neutrino energies in the neighborhood of 6.3\pev. Adopting model predictions for extraterrestrial neutrino fluxes from active galactic nuclei, gamma-ray bursters, and the collapse of topological defects, we estimate event rates in large-volume water \v{C}erenkov detectors and large-area ground arrays.Comment: 32 pages, 11 figures, uses RevTeX and boxedep

    Lepton Fluxes from Atmospheric Charm

    Get PDF
    We reexamine the charm contribution to atmospheric lepton fluxes in the context of perturbative QCD. We include next-to-leading order corrections and discuss theoretical uncertainties due to the extrapolations of the gluon distributions at small-x. We show that the charm contribution to the atmospheric muon flux becomes dominant over the conventional contribution from pion and kaon decays at energies of about 10^5 GeV. We compare our fluxes with previous calculations.Comment: 19 pages, latex, revtex, psfi

    High Energy Neutrino Signals of Four Neutrino Mixing

    Full text link
    We evaluate the upward shower and muon event rates for two characteristic four neutrino mixing models for extragalactic neutrinos, as well as for the atmospheric neutrinos, with energy thresholds of 1 TeV, 10 TeV and 100 TeV. We show that by comparing the shower to muon event rates, one can distinguish between oscillation and no-oscillation models. By measuring shower and muon event rates for energy thresholds of 10 TeV and 100 TeV, and by considering their ratio, it is possible to use extragalactic neutrino sources to determine the type of four-flavor mixing pattern. We find that one to ten years of data taking with kilometer-size detector has a very good chance of providing valuable information about the physics beyond the Standard Model.Comment: version accepted for publication in Phys. Rev.

    Neutrino Detection with Inclined Air Showers

    Full text link
    The possibilities of detecting high energy neutrinos through inclined showers produced in the atmosphere are addressed with an emphasis on the detection of air showers by arrays of particle detectors. Rates of inclined showers produced by both down-going neutrino interactions and by up-coming τ\tau decays from earth-skimming neutrinos as a function of shower energy are calculated with analytical methods using two sample neutrino fluxes with different spectral indices. The relative contributions from different flavors and charged, neutral current and resonant interactions are compared for down-going neutrinos interacting in the atmosphere. No detailed description of detectors is attempted but rough energy thresholds are implemented to establish the ranges of energies which are more suitable for neutrino detection through inclined showers. Down-going and up-coming rates are compared.Comment: Submitted to New Journal of Physic

    Constraining Antimatter Domains in the Early Universe with Big Bang Nucleosynthesis

    Full text link
    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of He-4. For larger domains, the limit comes from He-3 overproduction. Most of the He-3 from antiproton-helium annihilation is annihilated also. The main source of He-3 is photodisintegration of He-4 by the electromagnetic cascades initiated by the annihilation.Comment: 4 pages, 2 figures, revtex, (slightly shortened

    Cosmic Strings and the String Dilaton

    Full text link
    The existence of a dilaton (or moduli) with gravitational-strength coupling to matter imposes stringent constraints on the allowed energy scale of cosmic strings, η\eta. In particular, superheavy gauge strings with η1016GeV\eta \sim 10^{16} GeV are ruled out unless the dilaton mass m_{\phi} \gsim 100 TeV, while the currently popular value mϕ1TeVm_{\phi} \sim 1 TeV imposes the bound \eta \lsim 3 \times 10^{11} GeV. Similar constraints are obtained for global topological defects. Some non-standard cosmological scenarios which can avoid these constraints are pointed out.Comment: 16 page

    Electromagnetic Cascades and Cascade Nucleosynthesis in the Early Universe

    Get PDF
    We describe a calculation of electromagnetic cascading in radiation and matter in the early universe initiated by the decay of massive particles or by some other process. We have used a combination of Monte Carlo and numerical techniques which enables us to use exact cross sections, where known, for all the relevant processes. In cascades initiated after the epoch of big bang nucleosynthesis γ\gamma-rays in the cascades will photodisintegrate 4^4He, producing 3^3He and deuterium. Using the observed 3^3He and deuterium abundances we are able to place constraints on the cascade energy deposition as a function of cosmic time. In the case of the decay of massive primordial particles, we place limits on the density of massive primordial particles as a function of their mean decay time, and on the expected intensity of decay neutrinos.Comment: compressed and uuencoded postscript. We now include a comparison with previous work of the photon spectrum in the cascade and the limits we calculate for the density of massive particles. The method of calculation of photon spectra at low energies has been improved. Most figures are revised. Our conclusions are substantially unchange

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore
    corecore