1,608 research outputs found

    INTERACTION BETWEEN PTERIDINES AND TRYPTOPHAN

    Full text link

    Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

    Full text link
    We have studied the chemical potential shift as a function of temperature in Nd1−x_{1-x}Srx_xMnO3_3 (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples (x=0.4x=0.4 and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the ege_g band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature (TCT_C), which we attribute to the crossover from the DE to lattice-polaron regimes.Comment: 5 pages, 6 figure

    Electronic structure of spinel-type LiV_2O_4

    Full text link
    The band structure of the cubic spinel compound LiV_2O_4, which has been reported recently to show heavy Fermion behavior, has been calculated within the local-density approximation using a full-potential version of the linear augmented-plane-wave method. The results show that partially-filled V 3d bands are located about 1.9 eV above the O 2p bands and the V 3d bands are split into a lower partially-filled t_{2g} complex and an upper unoccupied e_{g} manifold. The fact that the conduction electrons originate solely from the t_{2g} bands suggests that the mechanism for the mass enhancement in this system is different from that in the 4f heavy Fermion systems, where these effects are attributed to the hybridization between the localized 4f levels and itinerant spd bands.Comment: 5 pages, revte

    One particle spectral weight of the three dimensional single band Hubbard model

    Full text link
    Dynamic properties of the three-dimensional single-band Hubbard model are studied using Quantum Monte Carlo combined with the maximum entropy technique. At half-filling, there is a clear gap in the density of states and well-defined quasiparticle peaks at the top (bottom) of the lower (upper) Hubbard band. We find an antiferromagnetically induced weight above the naive Fermi momentum. Upon hole doping, the chemical potential moves to the top of the lower band where a robust peak is observed. Results are compared with spin-density-wave (SDW) mean-field and self consistent Born approximation results, and also with the infinite dimensional Hubbard model, and experimental photoemission (PES) for three dimensional transition-metal oxides.Comment: 11 pages, REVTeX, 16 figures included using psfig.sty. Ref.30 correcte

    Electron Doping of Cuprates via Interfaces with Manganites

    Full text link
    The electron doping of undoped high-TcT_c cuprates via the transfer of charge from manganites (or other oxides) using heterostructure geometries is here theoretically discussed. This possibility is mainly addressed via a detailed analysis of photoemission and diffusion voltage experiments, which locate the Fermi level of manganites above the bottom of the upper Hubbard band of some cuprate parent compounds. A diagram with the relative location of Fermi levels and gaps for several oxides is presented. The procedure discussed here is generic, allowing for the qualitative prediction of the charge flow direction at several oxide interfaces. The addition of electrons to antiferromagnetic Cu oxides may lead to a superconducting state at the interface with minimal quenched disorder. Model calculations using static and dynamical mean-field theory, supplemented by a Poisson equation formalism to address charge redistribution at the interface, support this view. The magnetic state of the manganites could be antiferromagnetic or ferromagnetic. The former is better to induce superconductivity than the latter, since the spin-polarized charge transfer will be detrimental to singlet superconductivity. It is concluded that in spite of the robust Hubbard gaps, the electron doping of undoped cuprates at interfaces appears possible, and its realization may open an exciting area of research in oxide heterostructures.Comment: 12 pages, 9 figure

    Vibrational spectroscopic observation of ice dewetting on MgO(001)

    No full text
    The properties of the interfacial water monolayer on MgO(001) during growth of multilayer ice and, in particular, the dewetting of crystalline ice on MgO(001) are revealed by vibrational sum frequency generation and infrared reflection absorption spectroscopy

    Quasiparticles and quantum phase transition in universal low-temperature properties of heavy-fermion metals

    Full text link
    We demonstrate, that the main universal features of the low temperature experimental H−TH-T phase diagram of CeCoIn5 and other heavy-fermion metals can be well explained using Landau paradigm of quasiparticles. The main point of our theory is that above quasiparticles form so-called fermion-condensate state, achieved by a fermion condensation quantum phase transition (FCQPT). When a heavy fermion liquid undergoes FCQPT, the fluctuations accompanying above quantum critical point are strongly suppressed and cannot destroy the quasiparticles. The comparison of our theoretical results with experimental data on CeCoIn5 have shown that the electronic system of above substance provides a unique opportunity to study the relationship between quasiparticles properties and non-Fermi liquid behavior.Comment: 7 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:cond-mat/060260

    Angle-resolved photoemission study of MX-chain compound [Ni(chxn)2_2Br]Br2_2

    Full text link
    We report on the results of angle-resolved photoemission experiments on a quasi-one-dimensional MXMX-chain compound [Ni(chxn)2_2Br]Br2_2 (chxn = 1RR,2RR-cyclohexanediamine), a one-dimensional Heisenberg system with S=1/2S=1/2 and J∼3600J \sim 3600 K, which shows a gigantic non-linear optical effect. A "band" having about 500 meV energy dispersion is found in the first half of the Brillouin zone (0≤kb/π<1/2)(0\le kb/\pi <1/2), but disappears at kb/π∼1/2kb / \pi \sim 1/2. Two dispersive features, expected from the spin-charge separation, as have been observed in other quasi-one-dimensional systems like Sr2_2CuO3_3, are not detected. These characteristic features are well reproduced by the dd-pp chain model calculations with a small charge-transfer energy Δ\Delta compared with that of one-dimensional Cu-O based compounds. We propose that this smaller Δ\Delta is the origin of the absence of clear spin- and charge-separation in the photoemission spectra and strong non-linear optical effect in [Ni(chxn)2_2Br]Br2_2.Comment: 4 pages, 3 figure
    • …
    corecore