134 research outputs found

    High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    Get PDF
    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies of 20 and 30 MHz with bandwidths of 5, 15 and 25% using a broadband focused PVDF transducer. The presence of subharmonic energy was observed for all bandwidths at a wide range of pressures (0.49 to 5.7 MPa and 0.45 to 4.5 MPa for the 20 and 30 MHz cases, respectively). Distinct ultraharmonics were observed only in the 5% bandwidth cases. Second harmonic energy was also present, but this was at least partly due to nonlinear propagation, as indicated by linear scatterer signals. Evidence of destruction was found only at higher peak negative pressures (e.g., >2 MPa for 30 MHz 5% bandwidth pulse). The results suggest that small lipid bubble formulations may be useful for the purposes of high frequency nonlinear contrast imaging. (E-mail: [email protected]

    Ileo-Colon Targeting of the Poorly Water-Soluble Drug Celecoxib Using a pH-Dependent Coating in Combination with Self-Emulsifying Drug Delivery or Solid Dispersion Systems

    Get PDF
    Targeting celecoxib to the ileo-colonic region could be beneficial for the treatment and prevention of colon cancer. Ileo-colonic targeting can be achieved by using pH-dependent coating systems such as ColoPulse. Celecoxib has poor aqueous solubility, which may jeopardize optimal treatment. Therefore, we combined a pH-dependent coating with self-emulsifying drug delivery systems (SEDDS) or with solid dispersion systems (SD); two approaches that are often used to improve the dissolution behavior of lipophilic drugs. The dissolution behavior of various formulations of both systems was investigated. Optimized formulations with and without precipitation inhibitors were coated with the ColoPulse and the release of celecoxib was tested under non-sink conditions using an in vitro dissolution system, simulating the pH gradient of the gastrointestinal tract. The dissolution behavior of SDs with and without precipitation inhibitor (sodium dodecyl sulfate) and the SEDDS without precipitation inhibitor was negatively impacted by the coating. Control experiments indicated that components of the coating released in the dissolution medium acted as precipitation mediators. However, the SEDDS formulation with HPMC 4000 cps as a precipitation inhibitor showed excellent dissolution behavior. We hypothesize that HPMC accumulates at the oil/water interface of the emulsion thereby stabilizing the emulsion resulting in maintenance of the supersaturated state

    Silencing Heat Shock Protein 47 (HSP47) in Fibrogenic Precision-Cut Lung Slices:A Surprising Lack of Effects on Fibrogenesis?

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic disease that is characterized by the excessive deposition of scar tissue in the lungs. As currently available treatments are unable to restore lung function in patients, there is an urgent medical need for more effective drugs. Developing such drugs, however, is challenging because IPF has a complex pathogenesis. Emerging evidence indicates that heat shock protein 47 (HSP47), which is encoded by the gene Serpinh1, may be a suitable therapeutic target as it is required for collagen synthesis. Pharmacological inhibition or knockdown of HSP47 could therefore be a promising approach to treat fibrosis. The objective of this study was to assess the therapeutic potential of Serpinh1-targeting small interfering RNA (siRNA) in fibrogenic precision-cut lung slices prepared from murine tissue. To enhance fibrogenesis, slices were cultured for up to 144 h with transforming growth factor β1. Self-deliverable siRNA was used to knockdown mRNA and protein expression, without affecting the viability and morphology of slices. After silencing HSP47, only the secretion of fibronectin was reduced while other aspects of fibrogenesis remained unaffected (e.g., myofibroblast differentiation as well as collagen secretion and deposition). These observations are surprising as others have shown that Serpinh1-targeting siRNA suppressed collagen deposition in animals. Further studies are therefore warranted to elucidate downstream effects on fibrosis upon silencing HSP47

    Copper-Heparin Inhalation Therapy To Repair Emphysema:A Scientific Rationale

    Get PDF
    Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs. Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5 and lysyl oxidase-like 1 in the elastin restoration process is discussed, and it is argued that copper deficiency is a plausible reason for failing elastin repair in emphysema patients. Since copper-dependent lysyl oxidases crosslink elastin as well as collagen fibers, copper supplementation stimulates accumulation of both proteins in the extracellular matrix. Restoration of abnormal elastin fibers in emphysematous lungs is favorable, whereas stimulating pulmonary fibrosis formation by further increasing collagen concentrations and organization is detrimental. Heparin inhibits collagen crosslinking while stimulating elastin repair and might therefore be the ideal companion of copper for emphysema patients. Efficacy and safety considerations may lead to a preference of pulmonary administration of copper-heparin over systemic administration

    Oromucosal films: from patient centricity to production by printing techniques

    Get PDF
    INTRODUCTION: Oromucosal films, comprising mucoadhesive buccal films (MBFs) and orodispersible films (ODFs), are considered patient-centric dosage forms. Target groups are patients with special needs. Various active pharmaceutical ingredients have been shown to be suitable for oromucosal film production. A shift is seen in the production techniques, from conventional solvent casting to printing techniques. AREAS COVERED: In this review, the patient acceptability of oromucosal films is discussed. An overview is given of the small molecule drugs, biopharmaceuticals and herbal extracts that have been incorporated so far. Finally, the current state of 2D and 3D printing techniques for production purposes is discussed. EXPERT OPINION: The patient-centric features are important for the further development and acceptance of this oral solid dosage form. Oromucosal films perfectly fit in the current attention for personalized medicine. Both MBFs and ODFs are intended for either a local or a systemic effect. For buccal absorption, sufficient mucoadhesion is one of the most important criteria an oromucosal film must comply with. For the preparation, the solvent casting technique is still predominately used. Some limitations of this production method can be tackled by printing techniques. However, these novel techniques introduce new requirements, yet to be set, for oromucosal film preparation

    Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver

    Get PDF
    Liver fibrogenesis is associated with excessive production of extracellular matrix by myofibroblasts that often leads to cirrhosis and consequently liver dysfunction and death. Novel protein-based antifibrotic drugs show high specificity and efficacy, but their use in the treatment of fibrosis causes a high burden for patients, since repetitive and long-term parenteral administration is required as most proteins and peptides are rapidly cleared from the circulation. Therefore, we developed biodegradable polymeric microspheres for the sustained release of proteinaceous drugs. We encapsulated the drug carrier pPB-HSA, which specifically binds to the PDGF beta R that is highly upregulated on activated myofibroblasts, into microspheres composed of hydrophilic multi-block copolymers composed of poly(L-lactide) and poly ethylene glycol/poly(is an element of-caprolactone), allowing diffusion-controlled release. Firstly, we estimated in mice with acute fibrogenesis induced by a single CCl4 injection the half-life of I-125-labeled pPB-HSA at 40 min and confirmed the preferential accumulation in fibrotic tissue. Subsequently, we determined in the Mdr2-/- mouse model of advanced biliary liver fibrosis how the subcutaneously injected microspheres released pPB-HSA into both plasma and fibrotic liver at 24 h after injection, which was maintained for six days. Although the microspheres still contained protein at day seven, pPB-HSA plasma and liver concentrations were decreased. This reduction was associated with an antibody response against the human albumin-based carrier protein, which was prevented by using a mouse albumin-based equivalent (pPB-MSA). In conclusion, this study shows that our polymeric microspheres are suitable as sustained release formulation for targeted protein constructs such as pPB-HSA. These formulations could be applied for the long-term treatment of chronic diseases such as liver fibrosis

    Characterization and modulation of anti- αβTCR antibodies and their respective binding sites at the βTCR chain to enrich engineered T cells

    Get PDF
    T cell engineering strategies offer cure to patients and entered clinical practice with chimeric antibody-based receptors, αβT cell receptors (αβTCR)-based strategies are however lagging behind. To allow a more rapid and successful translation to successful concepts also using αβTCRs for engineering, incorporating a method for the purification of genetically modified T cells, as well as engineered T cell deletion after transfer into patients, could be beneficial. This would allow to increase efficacy, reduce potential side effects, and improve safety of newly, to be tested, lead structures. By characterizing the antigen binding interface of a GMP-grade anti-αβTCR antibody, usually used for depletion of αβT cells from stem cell transplantation products, we developed a strategy which allows for the purification of untouched αβTCR engineered immune cells by changing two amino acids only in the TCR β chain constant domain of introduced TCR chains. Vice versa, we engineered an antibody, which targets an extended mutated interface of nine amino acids in the TCR β chain constant domain, and provides the opportunity to further develop depletion strategies of engineered immune cells
    corecore