102 research outputs found

    A composition theorem for the Fourier Entropy-Influence conjecture

    Full text link
    The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96] seeks to relate two fundamental measures of Boolean function complexity: it states that H[f]≤CInf[f]H[f] \leq C Inf[f] holds for every Boolean function ff, where H[f]H[f] denotes the spectral entropy of ff, Inf[f]Inf[f] is its total influence, and C>0C > 0 is a universal constant. Despite significant interest in the conjecture it has only been shown to hold for a few classes of Boolean functions. Our main result is a composition theorem for the FEI conjecture. We show that if g1,...,gkg_1,...,g_k are functions over disjoint sets of variables satisfying the conjecture, and if the Fourier transform of FF taken with respect to the product distribution with biases E[g1],...,E[gk]E[g_1],...,E[g_k] satisfies the conjecture, then their composition F(g1(x1),...,gk(xk))F(g_1(x^1),...,g_k(x^k)) satisfies the conjecture. As an application we show that the FEI conjecture holds for read-once formulas over arbitrary gates of bounded arity, extending a recent result [OWZ11] which proved it for read-once decision trees. Our techniques also yield an explicit function with the largest known ratio of C≥6.278C \geq 6.278 between H[f]H[f] and Inf[f]Inf[f], improving on the previous lower bound of 4.615

    Majority Dynamics and Aggregation of Information in Social Networks

    Full text link
    Consider n individuals who, by popular vote, choose among q >= 2 alternatives, one of which is "better" than the others. Assume that each individual votes independently at random, and that the probability of voting for the better alternative is larger than the probability of voting for any other. It follows from the law of large numbers that a plurality vote among the n individuals would result in the correct outcome, with probability approaching one exponentially quickly as n tends to infinity. Our interest in this paper is in a variant of the process above where, after forming their initial opinions, the voters update their decisions based on some interaction with their neighbors in a social network. Our main example is "majority dynamics", in which each voter adopts the most popular opinion among its friends. The interaction repeats for some number of rounds and is then followed by a population-wide plurality vote. The question we tackle is that of "efficient aggregation of information": in which cases is the better alternative chosen with probability approaching one as n tends to infinity? Conversely, for which sequences of growing graphs does aggregation fail, so that the wrong alternative gets chosen with probability bounded away from zero? We construct a family of examples in which interaction prevents efficient aggregation of information, and give a condition on the social network which ensures that aggregation occurs. For the case of majority dynamics we also investigate the question of unanimity in the limit. In particular, if the voters' social network is an expander graph, we show that if the initial population is sufficiently biased towards a particular alternative then that alternative will eventually become the unanimous preference of the entire population.Comment: 22 page

    Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random Satisfiability problem, and its application to stop-and-restart resolutions

    Full text link
    A large deviation analysis of the solving complexity of random 3-Satisfiability instances slightly below threshold is presented. While finding a solution for such instances demands an exponential effort with high probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly in the size of the instance only. This exponentially small probability of easy resolutions is analytically calculated, and the corresponding exponent shown to be smaller (in absolute value) than the growth exponent of the typical resolution time. Our study therefore gives some theoretical basis to heuristic stop-and-restart solving procedures, and suggests a natural cut-off (the size of the instance) for the restart.Comment: Revtex file, 4 figure

    Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems

    Full text link
    We review the understanding of the random constraint satisfaction problems, focusing on the q-coloring of large random graphs, that has been achieved using the cavity method of the physicists. We also discuss the properties of the phase diagram in temperature, the connections with the glass transition phenomenology in physics, and the related algorithmic issues.Comment: 10 pages, Proceedings of the International Workshop on Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200

    Relaxation and Metastability in the RandomWalkSAT search procedure

    Full text link
    An analysis of the average properties of a local search resolution procedure for the satisfaction of random Boolean constraints is presented. Depending on the ratio alpha of constraints per variable, resolution takes a time T_res growing linearly (T_res \sim tau(alpha) N, alpha < alpha_d) or exponentially (T_res \sim exp(N zeta(alpha)), alpha > alpha_d) with the size N of the instance. The relaxation time tau(alpha) in the linear phase is calculated through a systematic expansion scheme based on a quantum formulation of the evolution operator. For alpha > alpha_d, the system is trapped in some metastable state, and resolution occurs from escape from this state through crossing of a large barrier. An annealed calculation of the height zeta(alpha) of this barrier is proposed. The polynomial/exponentiel cross-over alpha_d is not related to the onset of clustering among solutions.Comment: 23 pages, 11 figures. A mistake in sec. IV.B has been correcte

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Noise Sensitivity in Continuum Percolation

    Full text link
    We prove that the Poisson Boolean model, also known as the Gilbert disc model, is noise sensitive at criticality. This is the first such result for a Continuum Percolation model, and the first for which the critical probability p_c \ne 1/2. Our proof uses a version of the Benjamini-Kalai-Schramm Theorem for biased product measures. A quantitative version of this result was recently proved by Keller and Kindler. We give a simple deduction of the non-quantitative result from the unbiased version. We also develop a quite general method of approximating Continuum Percolation models by discrete models with p_c bounded away from zero; this method is based on an extremal result on non-uniform hypergraphs.Comment: 42 page
    • …
    corecore