102 research outputs found
A composition theorem for the Fourier Entropy-Influence conjecture
The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96]
seeks to relate two fundamental measures of Boolean function complexity: it
states that holds for every Boolean function , where
denotes the spectral entropy of , is its total influence,
and is a universal constant. Despite significant interest in the
conjecture it has only been shown to hold for a few classes of Boolean
functions.
Our main result is a composition theorem for the FEI conjecture. We show that
if are functions over disjoint sets of variables satisfying the
conjecture, and if the Fourier transform of taken with respect to the
product distribution with biases satisfies the conjecture,
then their composition satisfies the conjecture. As
an application we show that the FEI conjecture holds for read-once formulas
over arbitrary gates of bounded arity, extending a recent result [OWZ11] which
proved it for read-once decision trees. Our techniques also yield an explicit
function with the largest known ratio of between and
, improving on the previous lower bound of 4.615
Majority Dynamics and Aggregation of Information in Social Networks
Consider n individuals who, by popular vote, choose among q >= 2
alternatives, one of which is "better" than the others. Assume that each
individual votes independently at random, and that the probability of voting
for the better alternative is larger than the probability of voting for any
other. It follows from the law of large numbers that a plurality vote among the
n individuals would result in the correct outcome, with probability approaching
one exponentially quickly as n tends to infinity. Our interest in this paper is
in a variant of the process above where, after forming their initial opinions,
the voters update their decisions based on some interaction with their
neighbors in a social network. Our main example is "majority dynamics", in
which each voter adopts the most popular opinion among its friends. The
interaction repeats for some number of rounds and is then followed by a
population-wide plurality vote.
The question we tackle is that of "efficient aggregation of information": in
which cases is the better alternative chosen with probability approaching one
as n tends to infinity? Conversely, for which sequences of growing graphs does
aggregation fail, so that the wrong alternative gets chosen with probability
bounded away from zero? We construct a family of examples in which interaction
prevents efficient aggregation of information, and give a condition on the
social network which ensures that aggregation occurs. For the case of majority
dynamics we also investigate the question of unanimity in the limit. In
particular, if the voters' social network is an expander graph, we show that if
the initial population is sufficiently biased towards a particular alternative
then that alternative will eventually become the unanimous preference of the
entire population.Comment: 22 page
Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random Satisfiability problem, and its application to stop-and-restart resolutions
A large deviation analysis of the solving complexity of random
3-Satisfiability instances slightly below threshold is presented. While finding
a solution for such instances demands an exponential effort with high
probability, we show that an exponentially small fraction of resolutions
require a computation scaling linearly in the size of the instance only. This
exponentially small probability of easy resolutions is analytically calculated,
and the corresponding exponent shown to be smaller (in absolute value) than the
growth exponent of the typical resolution time. Our study therefore gives some
theoretical basis to heuristic stop-and-restart solving procedures, and
suggests a natural cut-off (the size of the instance) for the restart.Comment: Revtex file, 4 figure
Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems
We review the understanding of the random constraint satisfaction problems,
focusing on the q-coloring of large random graphs, that has been achieved using
the cavity method of the physicists. We also discuss the properties of the
phase diagram in temperature, the connections with the glass transition
phenomenology in physics, and the related algorithmic issues.Comment: 10 pages, Proceedings of the International Workshop on
Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200
Relaxation and Metastability in the RandomWalkSAT search procedure
An analysis of the average properties of a local search resolution procedure
for the satisfaction of random Boolean constraints is presented. Depending on
the ratio alpha of constraints per variable, resolution takes a time T_res
growing linearly (T_res \sim tau(alpha) N, alpha < alpha_d) or exponentially
(T_res \sim exp(N zeta(alpha)), alpha > alpha_d) with the size N of the
instance. The relaxation time tau(alpha) in the linear phase is calculated
through a systematic expansion scheme based on a quantum formulation of the
evolution operator. For alpha > alpha_d, the system is trapped in some
metastable state, and resolution occurs from escape from this state through
crossing of a large barrier. An annealed calculation of the height zeta(alpha)
of this barrier is proposed. The polynomial/exponentiel cross-over alpha_d is
not related to the onset of clustering among solutions.Comment: 23 pages, 11 figures. A mistake in sec. IV.B has been correcte
On the freezing of variables in random constraint satisfaction problems
The set of solutions of random constraint satisfaction problems (zero energy
groundstates of mean-field diluted spin glasses) undergoes several structural
phase transitions as the amount of constraints is increased. This set first
breaks down into a large number of well separated clusters. At the freezing
transition, which is in general distinct from the clustering one, some
variables (spins) take the same value in all solutions of a given cluster. In
this paper we study the critical behavior around the freezing transition, which
appears in the unfrozen phase as the divergence of the sizes of the
rearrangements induced in response to the modification of a variable. The
formalism is developed on generic constraint satisfaction problems and applied
in particular to the random satisfiability of boolean formulas and to the
coloring of random graphs. The computation is first performed in random tree
ensembles, for which we underline a connection with percolation models and with
the reconstruction problem of information theory. The validity of these results
for the original random ensembles is then discussed in the framework of the
cavity method.Comment: 32 pages, 7 figure
Noise Sensitivity in Continuum Percolation
We prove that the Poisson Boolean model, also known as the Gilbert disc
model, is noise sensitive at criticality. This is the first such result for a
Continuum Percolation model, and the first for which the critical probability
p_c \ne 1/2. Our proof uses a version of the Benjamini-Kalai-Schramm Theorem
for biased product measures. A quantitative version of this result was recently
proved by Keller and Kindler. We give a simple deduction of the
non-quantitative result from the unbiased version. We also develop a quite
general method of approximating Continuum Percolation models by discrete models
with p_c bounded away from zero; this method is based on an extremal result on
non-uniform hypergraphs.Comment: 42 page
- …