98 research outputs found

    Microarchitecture Influences Microdamage Accumulation in Human Vertebral Trabecular Bone

    Get PDF
    It has been suggested that accumulation of microdamage with age contributes to skeletal fragility. However, data on the age-related increase in microdamage and the association between microdamage and trabecular microarchitecture in human vertebral cancellous bone are limited. We quantified microdamage in cancellous bone from human lumbar (L2) vertebral bodies obtained from 23 donors 54–93 yr of age (8 men and 15 women). Damage was measured using histologic techniques of sequential labeling with chelating agents and was related to 3D microarchitecture, as assessed by high-resolution μCT. There were no significant differences between sexes, although women tended to have a higher microcrack density (Cr.Dn) than men. Cr.Dn increased exponentially with age (r = 0.65, p < 0.001) and was correlated with bone volume fraction (BV/TV; r = −0.55; p < 0.01), trabecular number (Tb.N; r = −0.56 p = 0.008), structure model index (SMI; r = 0.59; p = 0.005), and trabecular separation (Tb.Sp; r = 0.59; p < 0.009). All architecture parameters were strongly correlated with each other and with BV/TV. Stepwise regression showed that SMI was the best predictor of microdamage, explaining 35% of the variance in Cr.Dn and 20% of the variance in diffuse damage accumulation. In addition, microcrack length was significantly greater in the highest versus lowest tertiles of SMI. In conclusion, in human vertebral cancellous bone, microdamage increases with age and is associated with low BV/TV and a rod-like trabecular architecture

    Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges

    Get PDF
    Lumbar discectomy is a very effective therapy for neurological decompression in patients suffering from sciatica due to hernia nuclei pulposus. However, high recurrence rates and persisting post-operative low back pain in these patients require serious attention. In the past decade, tissue engineering strategies have been developed mainly targeted to the regeneration of the nucleus pulposus (NP) of the intervertebral disc. Accompanying techniques that deal with the damaged annulus fibrous are now increasingly recognised as mandatory in order to prevent re-herniation to increase the potential of NP repair and to confine NP replacement therapies. In the current review, the requirements, achievements and challenges in this quickly emerging field of research are discussed

    Human bone material characterization: integrated imaging surface investigation of male fragility fractures

    No full text
    SUMMARY: The interrelation of calcium and phosphorus was evaluated as a function of bone material quality in femoral heads from male fragility fracture patients via surface analytical imaging as well as scanning microscopy techniques. A link between fragility fractures and increased calcium to phosphorus ratio was observed despite normal mineralization density distribution. INTRODUCTION: Bone fragility in men has been recently recognized as a public health issue, but little attention has been devoted to bone material quality and the possible efficacy in fracture risk prevention. Clinical routine fracture risk estimations do not consider the quality of the mineralized matrix and the critical role played by the different chemical components that are present. This study uses a combination of different imaging and analytical techniques to gain insights into both the spatial distribution and the relationship of phosphorus and calcium in bone. METHODS: X-ray photoelectron spectroscopy and time-offlight secondary ion mass spectrometry imaging techniques were used to investigate the relationship between calcium and phosphorus in un-embedded human femoral head specimens from fragility fracture patients and non-fracture age-matched controls. The inclusion of the bone mineral density distribution via backscattered scanning electron microscopy provides information about the mineralization status between the groups. RESULTS: A link between fragility fracture and increased calcium and decreased phosphorus in the femoral head was observed despite normal mineralization density distribution. Results exhibited significantly increased calcium to phosphorus ratio in the fragility fracture group, whereas the nonfracture control group ratio was in agreement with the literature value of 1.66 M ratio in mature bone. CONCLUSIONS: Our results highlight the potential importance of the relationship between calcium and phosphorus, especially in areas of new bone formation, when estimating fracture risk of the femoral head. The determination of calcium and phosphorus fractions in bone mineral density measurements may hold the key to better fracture risk assessment as well as more targeted therapies.R. Zoehrer, E. Perilli, J.S. Kuliwaba, J.G. Shapter, N.L. Fazzalari and N.H. Voelcke

    Modic (endplate) changes in the lumbar spine: bone micro-architecture and remodelling

    No full text
    PURPOSE: In the literature, inter-vertebral MRI signal intensity changes (Modic changes) were associated with corresponding histological observations on endplate biopsies. However, tissue-level studies were limited. No quantitative histomorphometric study on bone biopsies has yet been conducted for Modic changes. The aim of this study was to characterise the bone micro-architectural parameters and bone remodelling indices associated with Modic changes. METHODS: Forty patients suffering from disabling low back pain, undergoing elective spinal surgery, and exhibiting Modic changes on MRI (Modic 1, n = 9; Modic 2, n = 25; Modic 3, n = 6), had a transpedicular vertebral body biopsy taken of subchondral bone. Biopsies were first examined by micro-CT, for 3D morphometric analysis of bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation, trabecular number, and structure model index. Then, samples underwent histological analysis, for determination of bone remodelling indices: osteoid surface to bone surface ratio (OS/BS), eroded surface to bone surface (ES/BS) and osteoid surface to eroded surface ratio (OS/ES). RESULTS: Micro-CT analysis revealed significantly higher BV/TV (up to 70 % increase, p < 0.01) and Tb.Th (up to +57 %, p < 0.01) in Modic 3 biopsies, compared to Modic 1 and 2. Histological analysis showed significantly lower OS/BS in Modic 2 biopsies (more than 28 % decrease, p < 0.05) compared to 1 and 3. ES/BS progressively decreased from Modic 1 to 2 to 3, whereas OS/ES progressively increased with significantly higher values in Modic 3 (up to 159 % increase, p < 0.05) than in Modic 1 and 2. CONCLUSIONS: Significant differences were found in bone micro-architectural parameters and remodelling indices among Modic types. Modic 1 biopsies had evidence of highest bone turnover, possibly due to an inflammatory process; Modic 2 biopsies were consistent with a reduced bone formation/remodelling stage; Modic 3 biopsies suggested a more stable sclerotic phase, with significantly increased BV/TV and Tb.Th compared to Modic 1 and 2, linked to increased bone formation and reduced resorption.Egon Perilli, Ian H. Parkinson, Le-Hoa Truong, Kuan C. Chong, Nicola L. Fazzalari, Orso L. Ost
    corecore