303 research outputs found

    A parallel algorithm for the enumeration of benzenoid hydrocarbons

    Full text link
    We present an improved parallel algorithm for the enumeration of fixed benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration of B_h from the previous best h=35 up to h=50. Analysis of the associated generating function confirms to a very high degree of certainty that BhAκh/hB_h \sim A \kappa^h /h and we estimate that the growth constant κ=5.161930154(8)\kappa = 5.161930154(8) and the amplitude A=0.2808499(1)A=0.2808499(1).Comment: 14 pages, 6 figure

    Scaling prediction for self-avoiding polygons revisited

    Full text link
    We analyse new exact enumeration data for self-avoiding polygons, counted by perimeter and area on the square, triangular and hexagonal lattices. In extending earlier analyses, we focus on the perimeter moments in the vicinity of the bicritical point. We also consider the shape of the critical curve near the bicritical point, which describes the crossover to the branched polymer phase. Our recently conjectured expression for the scaling function of rooted self-avoiding polygons is further supported. For (unrooted) self-avoiding polygons, the analysis reveals the presence of an additional additive term with a new universal amplitude. We conjecture the exact value of this amplitude.Comment: 17 pages, 3 figure

    Scaling function and universal amplitude combinations for self-avoiding polygons

    Full text link
    We analyze new data for self-avoiding polygons, on the square and triangular lattices, enumerated by both perimeter and area, providing evidence that the scaling function is the logarithm of an Airy function. The results imply universal amplitude combinations for all area moments and suggest that rooted self-avoiding polygons may satisfy a qq-algebraic functional equation.Comment: 9 page

    Punctured polygons and polyominoes on the square lattice

    Full text link
    We use the finite lattice method to count the number of punctured staircase and self-avoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for each puncture. The increase is 1.5 per puncture when enumerating by perimeter and 1.0 when enumerating by area. A refined estimate of the connective constant for polygons by area is given. A similar set of results is obtained for finitely punctured polyominoes. The exponent increase is proved to be 1.0 per puncture for polyominoes.Comment: 36 pages, 11 figure

    Large-qq expansion of the specific heat for the two-dimensional qq-state Potts model

    Get PDF
    We have calculated the large-qq expansion for the specific heat at the phase transition point in the two-dimensional qq-state Potts model to the 23rd order in 1/q1/\sqrt{q} using the finite lattice method. The obtained series allows us to give highly convergent estimates of the specific heat for q>4q>4 on the first order transition point. The result confirm us the correctness of the conjecture by Bhattacharya et al. on the asymptotic behavior of the specific heat for q4+q \to 4_+.Comment: 7 pages, LaTeX, 2 postscript figure

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    Study of the Potts Model on the Honeycomb and Triangular Lattices: Low-Temperature Series and Partition Function Zeros

    Full text link
    We present and analyze low-temperature series and complex-temperature partition function zeros for the qq-state Potts model with q=4q=4 on the honeycomb lattice and q=3,4q=3,4 on the triangular lattice. A discussion is given as to how the locations of the singularities obtained from the series analysis correlate with the complex-temperature phase boundary. Extending our earlier work, we include a similar discussion for the Potts model with q=3q=3 on the honeycomb lattice and with q=3,4q=3,4 on the kagom\'e lattice.Comment: 33 pages, Latex, 9 encapsulated postscript figures, J. Phys. A, in pres

    Low Temperature Expansions for Potts Models

    Full text link
    On simple cubic lattices, we compute low temperature series expansions for the energy, magnetization and susceptibility of the three-state Potts model in D=2 and D=3 to 45 and 39 excited bonds respectively, and the eight-state Potts model in D=2 to 25 excited bonds. We use a recursive procedure which enumerates states explicitly. We analyze the series using Dlog Pade analysis and inhomogeneous differential approximants.Comment: (17 pages + 8 figures

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    Zeros of the Partition Function for Higher--Spin 2D Ising Models

    Get PDF
    We present calculations of the complex-temperature zeros of the partition functions for 2D Ising models on the square lattice with spin s=1s=1, 3/2, and 2. These give insight into complex-temperature phase diagrams of these models in the thermodynamic limit. Support is adduced for a conjecture that all divergences of the magnetisation occur at endpoints of arcs of zeros protruding into the FM phase. We conjecture that there are 4[s2]24[s^2]-2 such arcs for s1s \ge 1, where [x][x] denotes the integral part of xx.Comment: 8 pages, latex, 3 uuencoded figure
    corecore