2,627 research outputs found
Analytical Model of an Isolated Single-atom Electron Source
An analytical model of a single-atom electron source is presented, where
electrons are created by near-threshold photoionization of an isolated atom.
The model considers the classical dynamics of the electron just after the
photon absorption, i.e. its motion in the potential of a singly charged ion and
a uniform electric field used for acceleration. From closed expressions for the
asymptotic transverse electron velocities and trajectories, the effective
source temperature and the effective source size can be calculated. The
influence of the acceleration field strength and the ionization laser energy on
these properties has been studied. With this model, a single-atom electron
source with the optimum electron beam properties can be designed. Furthermore,
we show that the model is also applicable to ionization of rubidium atoms, thus
also describes the ultracold electron source, which is based on photoionization
of laser-cooled alkali atoms
Increased amino acid turnover and myofibrillar protein breakdown in advanced cancer are associated with muscle weakness and impaired physical function
Muscle wasting in cancer negatively affects physical function and quality of life. This study investigates amino acid metabolism and the association with muscle mass and function in patients with cancer.In 16 patients with advanced cancer undergoing chemotherapy and 16 healthy controls, we administered an intravenous pulse and prime of stable amino acid tracers. We took blood samples to measure the Rate of appearance (Ra), whole body production (WBP), clearance (Cl), and post absorptive whole body net protein breakdown (WBnetPB). Plasma amino acid concentrations and enrichments were analysed by LC-MS/MS. We assessed muscle mass, handgrip/leg/respiratory muscle strength and reported physical activity, quality of life, and physical function.Muscle strength was lower in cancer patients than in healthy controls. Total and limb muscle mass, reported physical activity and WBnetPB were comparable. WBP and Cl of tau-methylhistidine, leucine, glutamine and taurine were higher in cancer patients as well as glycine Cl. Amino acid metabolism was correlated with low muscle mass, strength, physical function and quality of life.Myofibrillar protein breakdown and production of amino acids involved in muscle contractility are up regulated in patients with cancer undergoing chemotherapy and related to muscle weakness and reduced physical outcomes
Polarization effects on the effective temperature of an ultracold electron source
The influence has been studied of the ionization laser polarization on the
effective temperature of an ultracold electron source, which is based on
near-threshold photoionization. This source is capable of producing both
high-intensity and high-coherence electron pulses, with applications in for
example electron diffraction experiments. For both nanosecond and femtosecond
photoionization, a sinusoidal dependence of the temperature on polarization
angle has been found. For most experimental conditions, the temperature is
minimal when the polarization coincides with the direction of acceleration.
However, surprisingly, for nanosecond ionization a regime exists when the
temperature is minimal when the polarization is perpendicular to the
acceleration direction. This shows that in order to create electron bunches
with the highest transverse coherence length, it is important to control the
polarization of the ionization laser. The general trends and magnitudes of the
temperature measurements are described by a model, based on the analysis of
classical electron trajectories; this model further deepens our understanding
of the internal mechanisms during the photoionization process. Furthermore, for
nanosecond ionization, charge oscillations as a function of laser polarization
have been observed; for most situations the oscillation amplitude is small
Ultrafast electron diffraction using an ultracold source
We present diffraction patterns from micron-sized areas of mono-crystalline
graphite obtained with an ultracold and ultrafast electron source. We show that
high spatial coherence is manifest in the visibility of the patterns even for
picosecond bunches of appreciable charge, enabled by the extremely low source
temperature (~ 10 K). For a larger, ~ 100 um spot size on the sample, spatial
coherence lengths > 10 nm result, sufficient to resolve diffraction patterns of
complex protein crystals. This makes the source ideal for ultrafast electron
diffraction of complex macromolecular structures such as membrane proteins, in
a regime unattainable by conventional photocathode sources. By further reducing
the source size, sub-um spot sizes on the sample become possible with spatial
coherence lengths exceeding 1 nm, enabling ultrafast nano-diffraction for
material science.Comment: 5 pages, 4 figure
De zaadteelt van witte en rode sluitkool (Brassica oleracea) - Handleiding voor zaadteelt en selectie
Deze handleiding is met name bedoeld voor telers die met zaadteelt en/of selectie aan de gang willen gaan onder Nederlandse klimaatomstandigheden. Deze handleiding is gebaseerd op veel praktische ervaring uit het veld, deels ervaring vanuit (oude) vakliteratuur, en deels door interviews met ervaren zaadtelers en selecteurs
- …