6 research outputs found

    Role of Biofilms in Bioprocesses: A Framework for Multidimensional IBM Modelling of Heterogeneous Biofilms

    No full text
    During the past few decades, biofilm formation by a variety of microbial strains has attracted much attention, mainly in the medical and industrial settings due to their high resistance to antibiotics. However, environmental scientists and biochemical engineers have realized the importance of biofilm growth dynamics and their biocatalytic activity. For instance, the ability to forecast and control microbial communities has led to enhance biogas production and a better characterization of biofilm importance in wastewater treatment systems. Thus, understanding the fundamental processes contributing to biofilm growth is useful to anyone involved with natural or industrial settings where biofilms may play a significant role in determining variables such as bulk water quality, toxic compound biodegradation or product quality. Investigation of individual microcolonies within a biofilm using powerful microscopic tools has fueled the creation of biofilm models that reproduce biofilm growth dynamics and interactions. Mathematical frameworks that describe heterogeneous bacterial biofilms formation have greatly contributed to our understanding of physiochemical and biological principles of biofilm spreading dynamics. A clear understanding of heterogeneities at the local scale may be vital to solving the riddle of the complex nature of microbial communities, which is crucial to improve the performance, robustness and stability of biofilm-associated bioprocess
    corecore