230 research outputs found

    The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of the peroxisome proliferator-activated receptor gamma (PPAR-γ) has been proposed as a possible neuroprotective strategy to slow down the progression of early Parkinson's disease (PD). Here we report preclinical data on the use of the PPAR-γ agonist pioglitazone (Actos<sup>®</sup>; Takeda Pharmaceuticals Ltd.) in a paradigm resembling early PD in nonhuman primates.</p> <p>Methods</p> <p>Rhesus monkeys that were trained to perform a battery of behavioral tests received a single intracarotid arterial injection of 20 ml of saline containing 3 mg of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Twenty-four hours later the monkeys were assessed using a clinical rating scale, matched accordingly to disability, randomly assigned to one of three groups [placebo (n = 5), 2.5 (n = 6) or 5 (n = 5) mg/kg of pioglitazone] and their treatments started. Three months after daily oral dosing, the animals were necropsied.</p> <p>Results</p> <p>We observed significant improvements in clinical rating score (<it>P </it>= 0.02) in the animals treated with 5 mg/kg compared to placebo. Behavioral recovery was associated with preservation of nigrostriatal dopaminergic markers, observed as higher tyrosine hydroxylase (TH) putaminal optical density (<it>P </it>= 0.011), higher stereological cell counts of TH-ir (<it>P </it>= 0.02) and vesicular monoamine transporter-2 (VMAT-2)-ir nigral neurons (<it>P </it>= 0.006). Stereological cell counts of Nissl stained nigral neurons confirmed neuroprotection (<it>P </it>= 0.017). Pioglitazone-treated monkeys also showed a dose-dependent modulation of CD68-ir inflammatory cells, that was significantly decreased for 5 mg/kg treated animals compared to placebo (<it>P </it>= 0.018). A separate experiment to assess CSF penetration of pioglitazone revealed that 5 mg/kg p.o. induced consistently higher levels than 2.5 mg/kg and 7.5 mg/kg. p.o.</p> <p>Conclusions</p> <p>Our results indicate that oral administration of pioglitazone is neuroprotective when administered early after inducing a parkinsonian syndrome in rhesus monkeys and supports the concept that PPAR-γ is a viable target against neurodegeneration.</p

    Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys

    Get PDF
    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog 11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia

    The Effects of a Selective Dopamine D 2

    Full text link

    ADVANCE system testing: Can safety studies be conducted using electronic healthcare data? An example using pertussis vaccination

    Get PDF
    Introduction: The Accelerated Development of Vaccine benefit-risk Collaboration in Europe (ADVANCE) public-private collaboration, aimed to develop and test a system for rapid benefit-risk monitoring of vaccines using healthcare databases in Europe. The objective of this proof-of-concept (POC) study was to test the feasibility of the ADVANCE system to generate incidence rates (IRs) per 1000 person-years and incidence rate ratios (IRRs) for risks associated with whole cell- (wP) and acellular- (aP) pertussis vaccines, occurring in event-specific risk windows in children prior to their pre-school-entry booster. Methods: The study population comprised almost 5.1 million children aged 1 month to <6 years vaccinated with wP or aP vaccines during the study period from 1 January 1990 to 31 December 2015. Data from two Danish hospital (H) databases (AUH and SSI) and five primary care (PC) databases from, UK (THIN and RCGP RSC), Spain (SIDIAP and BIFAP) and Italy (Pedianet) were analysed. Database-specific IRRs between risk vs. non-risk periods were estimated in a self-controlled case series study and pooled using random-effects meta-analyses. Results: The overall IRs were: fever, 58.2 (95% CI: 58.1; 58.3), 96.9 (96.7; 97.1) for PC DBs and 8.56 (8.5; 8.6) for H DBs; convulsions, 7.6 (95% CI: 7.6; 7.7), 3.55 (3.5; 3.6) for PC and 12.87 (12.8; 13) for H; persistent crying, 3.9 (95% CI: 3.8; 3.9) for PC, injection-site reactions, 2.2 (95% CI 2.1; 2.2) for PC, hypotonic hypo-responsive episode (HHE), 0.4 (95% CI: 0.4; 0.4), 0.6 (0.6; 0.6) for PC and 0.2 (0.2; 0.3) for H; and somnolence: 0.3 (95% CI: 0.3; 0.3) for PC. The pooled IRRs for persistent crying, fever, and ISR, adjusted for age and healthy vaccinee period were higher after wP vs. aP vaccination, and lower for convulsions, for all doses. The IRR for HHE was slightly lower for wP than aP, while wP was associated with somnolence only for dose 1 and dose 3 compared with aP. Conclusions: The estimated IRs and IRRs were comparable with published data, therefore demonstrating that the ADVANCE system was able to combine several European healthcare databases to assess vaccine safety data for wP and aP vaccination

    Age-specific vaccination coverage estimates for influenza, human papillomavirus and measles containing vaccines from seven population-based healthcare databases from four EU countries – The ADVANCE project

    Get PDF
    Background: The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public–private collaboration aiming to develop and test a system for rapid benefit-risk monitoring of vaccines using existing healthcare databases in Europe. We estimated vaccine coverage from electronic healthcare databases as part of a fit-for-purpose assessment for vaccine benefit-risk studies. Methods: A retrospective dynamic cohort study was conducted through a distributed network approach. Coverage with measles-vaccine for birth year 2006, human papillomavirus (HPV)-vaccine for birth years 1990–2000 and influenza-vaccine for birth years 1920–1950 was estimated using period-prevalence and inverse probability weighting methods. Seven databases from four countries participated: Italy (Pedianet, Val Padana), Spain (BIFAP, SIDIAP), UK (RCGP-RSC, THIN), Denmark (SSI/AUH). Database access providers extracted the data, transformed it into a common structure and ran an R-script locally. The created output tables were shared and pooled at a central server. Results: The total study population comprised 274,616 persons for measles-vaccine, 2,011,666 persons for HPV-vaccine and 14,904,033 persons for influenza-vaccine. Measles-vaccine coverage varied from 84.3% (Denmark) to 96.5% (Italy, Val Padana) for the first dose and from 82.8% (Italy, Val Padana) to 90.9% (UK) for the second dose at the age of 7 years. The HPV-vaccine coverage, aggregated over birth years 1997–2000, ranged from 60% (UK) to 88.3% (Denmark) at the age of 15 years. The influenza-vaccine coverage for the influenza seasons from 2009 to 2015 for persons aged 65 years and more was roughly stable around 43% in Denmark and around 68% in the UK while a decrease from 58 to 50% was observed in Catalonia (Spain). Conclusions: We obtained detailed, age-specific coverage estimates though a common procedure. We discussed between database comparability and comparability to published national estimates

    ADVANCE system testing: Can coverage of pertussis vaccination be estimated in European countries using electronic healthcare databases: An example

    Get PDF
    Introduction: The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public-private collaboration aiming to develop and test a system for rapid benefit-risk (B/R) monitoring of vaccines, using existing healthcare databases in Europe. The objective of this paper was to assess the feasibility of using electronic healthcare databases to estimate dose-specific acellular pertussis (aP) and whole cell pertussis (wP) vaccine coverage. Methods: Seven electronic healthcare databases in four European countries (Denmark (n = 2), UK (n = 2), Spain (n = 2) and Italy (n = 1)) participated in this study. Children were included from birth and followed up to age six years. Vaccination exposure was obtained from the databases and classified by type (aP or wP), and dose 1, 2 or 3. Coverage was estimated using period prevalence. For the 2006 birth cohort, two estimation methods for pertussis vaccine coverage, period prevalence and cumulative incidence were compared for each database. Results: The majority of the 2,575,576 children included had been vaccinated at the country-specific recommended ages. Overall, the estimated dose 3 coverage was 88–97% in Denmark (birth cohorts from 2003 to 2014), 96–100% in the UK (2003–2014), 95–98% in Spain (2004–2014) and 94% in Italy (2006–2007). The estimated dose 3 coverage per birth cohort in Denmark and the UK differed by 1–6% compared with national estimates, with our estimates mostly higher. The estimated dose 3 coverage in Spain differed by 0–2% with no consistent over- or underestimation. In Italy, the estimates were 3% lower compared with the national estimates. Except for Italy, for which the two coverage estimation methods generated the same results, the estimated cumulative incidence coverages were consistently 1–10% lower than period prevalence estimates. Conclusion: Thi
    corecore