323 research outputs found

    Local density of states of the one-dimensional spinless fermion model

    Full text link
    We investigate the local density of states of the one-dimensional half-filled spinless fermion model with nearest-neighbor hopping t>0 and interaction V in its Luttinger liquid phase -2t < V <= 2t. The bulk density of states and the local density of states in open chains are calculated over the full band width 4t with an energy resolution <= 0.08t using the dynamical density-matrix renormalization group (DDMRG) method. We also perform DDMRG simulations with a resolution of 0.01t around the Fermi energy to reveal the power-law behaviour predicted by the Luttinger liquid theory for bulk and boundary density of states. The exponents are determined using a finite-size scaling analysis of DDMRG data for lattices with up to 3200 sites. The results agree with the exact exponents given by the Luttinger liquid theory combined with the Bethe Ansatz solution. The crossover from boundary to bulk density of states is analyzed. We have found that boundary effects can be seen in the local density of states at all energies even far away from the chain edges

    Phase separation in the Edwards model

    Full text link
    The nature of charge transport within a correlated background medium can be described by spinless fermions coupled to bosons in the model introduced by Edwards. Combining numerical density matrix renormalization group and analytical projector-based renormalization methods we explore the ground-state phase diagram of the Edwards model in one dimension. Below a critical boson frequency any long-range order disappears and the system becomes metallic. If the charge carriers are coupled to slow quantum bosons the Tomonaga-Luttinger liquid is attractive and finally makes room for a phase separated state, just as in the t-J model. The phase boundary separating repulsive from the attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge correlations, whereas fermion segregation is indicated by a vanishing inverse compressibility. On approaching phase separation the photoemission spectra develop strong anomalies.Comment: 6 pages, 5 figures, final versio

    Characterization of Mott-insulating and superfluid phases in the one-dimensional Bose--Hubbard model

    Full text link
    We use strong-coupling perturbation theory, the variational cluster approach (VCA), and the dynamical density-matrix renormalization group (DDMRG) method to investigate static and dynamical properties of the one-dimensional Bose--Hubbard model in both the Mott-insulating and superfluid phases. From the von Neumann entanglement entropy we determine the central charge and the transition points for the first two Mott lobes. Our DMRG results for the ground-state energy, momentum distribution function, boson correlation function decay, Mott gap, and single particle-spectral function are reproduced very well by the strong-coupling expansion to fifth order, and by VCA with clusters up to 12 sites as long as the ratio between the hopping amplitude and on-site repulsion, t/U, is smaller than 0.15 and 0.25, respectively. In addition, in the superfluid phase VCA captures well the ground-state energy and the sound velocity of the linear phonon modes. This comparison provides an authoritative estimate for the range of applicability of these methods. In strong-coupling theory for the Mott phase, the dynamical structure factor is obtained from the solution of an effective single-particle problem with an attractive potential. The resulting resonances show up as double-peak structure close to the Brillouin zone boundary. These high-energy features also appear in the superfluid phase which is characterized by a pronounced phonon mode at small momenta and energies, as predicted by Bogoliubov and field theory. In one dimension, there are no traces of an amplitude mode in the dynamical single-particle and two-particle correlation functions.Comment: 15 pages, 12 figure

    Local spectral properties of Luttinger liquids: scaling versus nonuniversal energy scales

    Full text link
    Motivated by recent scanning tunneling and photoemission spectroscopy measurements on self-organized gold chains on a germanium surface we reinvestigate the local single-particle spectral properties of Luttinger liquids. In the first part we use the bosonization approach to exactly compute the local spectral function of a simplified field theoretical low-energy model and take a closer look at scaling properties as a function of the ratio of energy and temperature. Translational invariant Luttinger liquids as well as those with an open boundary (cut chain geometry) are considered. We explicitly show that the scaling functions of both setups have the same analytic form. The scaling behavior suggests a variety of consistency checks which can be performed on measured data to experimentally verify Luttinger liquid behavior. In a second part we approximately compute the local spectral function of a microscopic lattice model---the extended Hubbard model---close to an open boundary using the functional renormalization group. We show that as a function of energy and temperature it follows the field theoretical prediction in the low-energy regime and point out the importance of nonuniversal energy scales inherent to any microscopic model. The spatial dependence of this spectral function is characterized by oscillatory behavior and an envelope function which follows a power law both in accordance with the field theoretical continuum model. Interestingly, for the lattice model we find a phase shift which is proportional to the two-particle interaction and not accounted for in the standard bosonization approach to Luttinger liquids with an open boundary. We briefly comment on the effects of several one-dimensional branches cutting the Fermi energy and Rashba spin-orbit interaction.Comment: 19 pages, 5 figures, version as accepted for publication in J. Phys.:Condensed Matte

    Strong coupling expansion for the Bose-Hubbard and the Jaynes-Cummings lattice model

    Full text link
    A strong coupling expansion, based on the Kato-Bloch perturbation theory, which has recently been proposed by Eckardt et al. [Phys. Rev. B 79, 195131] and Teichmann et al. [Phys. Rev. B 79, 224515] is implemented in order to study various aspects of the Bose-Hubbard and the Jaynes-Cummings lattice model. The approach, which allows to generate numerically all diagrams up to a desired order in the interaction strength is generalized for disordered systems and for the Jaynes-Cummings lattice model. Results for the Bose-Hubbard and the Jaynes-Cummings lattice model will be presented and compared with results from VCA and DMRG. Our focus will be on the Mott insulator to superfluid transition.Comment: 29 pages, 21 figure

    Anharmonicity in one-dimensional electron-phonon system

    Full text link
    We investigate the effect of anharmonicity on the one-dimensional half-filled Holstein model by using the determinant quantum Monte Carlo method. By calculating the order parameters we find that with and without anharmonicity there is always an transition from a disorder phase to a dimerized phase. Moreover, in the dimerized phase a lattice dimerization and a charge density wave coexist. The anharmonicity represented by the quartic term suppresses the dimerization as well as the charge density wave, while a double-well potential favors the dimerization. In addition, by calculating the correlation exponents we show that the disorder phase is metallic with gapless charge excitations and gapful spin excitations while in the dimerized phase both excitations are gapful.Comment: 5 page

    Toward fulfilling the aspirational goal of science as self-correcting: A call for editorial courage and diligence for error correction

    Get PDF
    Science is often described as ‘self-correcting’. Correction of scientific errors is vital, but it does not occur spontaneously. Rather, correction depends on individual scientists behaving in accordance with the self-correction norm. Some authors have suggested that failure to correct certain errors be considered scientific misconduct. But when serious errors are found, our experience suggests that corrections are not always expeditious, thorough, clear, and open. Herein, we address journals’ distinctive roles in correcting peer-reviewed scientific literature. The scientific community needs key individuals, including journal editors, to facilitate the correction process and to adjudicate disagreements in the field

    Discrete Symmetry Breaking Transitions Between Paired Superfluids

    Full text link
    We explore the zero-temperature phase diagram of bosons interacting via Feshbach resonant pairing interactions in one dimension. Using DMRG (Density Matrix Renormalization Group) and field theory techniques we characterize the phases and quantum phase transitions in this low-dimensional setting. We provide a broad range of evidence in support of an Ising quantum phase transition separating distinct paired superfluids, including results for the energy gaps, correlation functions and entanglement entropy. In particular, we show that the Ising correlation length, order parameter and critical properties are directly accessible from a ratio of the atomic and molecular two-point functions. We further demonstrate that both the zero-momentum occupation numbers and the visibility are in accordance with the absence of a purely atomic superfluid phase. We comment on the connection to recent studies of boson pairing in a generalized classical XY model.Comment: 18 pages, 22 figure

    Courtship Initiation Is Stimulated by Acoustic Signals in Drosophila melanogaster

    Get PDF
    Finding a mating partner is a critical task for many organisms. It is in the interest of males to employ multiple sensory modalities to search for females. In Drosophila melanogaster, vision is thought to be the most important courtship stimulating cue at long distance, while chemosensory cues are used at relatively short distance. In this report, we show that when visual cues are not available, sounds produced by the female allow the male to detect her presence in a large arena. When the target female was artificially immobilized, the male spent a prolonged time searching before starting courtship. This delay in courtship initiation was completely rescued by playing either white noise or recorded fly movement sounds to the male, indicating that the acoustic and/or seismic stimulus produced by movement stimulates courtship initiation, most likely by increasing the general arousal state of the male. Mutant males expressing tetanus toxin (TNT) under the control of Gr68a-GAL4 had a defect in finding active females and a delay in courtship initiation in a large arena, but not in a small arena. Gr68a-GAL4 was found to be expressed pleiotropically not only in putative gustatory pheromone receptor neurons but also in mechanosensory neurons, suggesting that Gr68a-positive mechanosensory neurons, not gustatory neurons, provide motion detection necessary for courtship initiation. TNT/Gr68a males were capable of discriminating the copulation status and age of target females in courtship conditioning, indicating that female discrimination and formation of olfactory courtship memory are independent of the Gr68a-expressing neurons that subserve gustation and mechanosensation. This study suggests for the first time that mechanical signals generated by a female fly have a prominent effect on males' courtship in the dark and leads the way to studying how multimodal sensory information and arousal are integrated in behavioral decision making

    Association of Increased Serum S100B Levels With High School Football Subconcussive Head Impacts

    Get PDF
    Astrocyte-enriched marker, S100B, shows promise for gauging the severity of acute brain trauma, and understanding subconcussive effects will advance its utility in tracking real-time acute brain damage. The aim of the study was to investigate whether serum S100B elevations were associated with frequency and magnitude of subconcussive head impacts in adolescents. This prospective cohort study of 17 high-school football players consisted of the following 12 time points: pre-season baseline, 5 in-season pre-post games, and post-season. A sensor-installed mouthguard recorded the number of head impacts, peak linear (PLA) and peak rotational (PRA) head accelerations from every practice and game. During the 5 games, players wore chest-strap heart-rate monitors to estimate players' excess post-exercise oxygen consumption (EPOC), accounting for physical exertion effects. At each time point, blood samples were obtained and assessed for S100B and creatine kinase levels to account for astrocyte damage/activation and muscle damage, respectively. Using k-means clustering on the impact data, players were categorized into high- or low-impact group. Two players withdrew during the first month of the study. A total of 156 blood samples from 15 players were assessed for S100B and creatine kinase levels and included in the analysis. A median value of 596 head impacts from 15 players were recorded during all practices and games in a season. S100B levels were significantly elevated in all post-game measures compared with the respective pre-game values (median-increase, 0.022 μg/L; interquartile-range, 0.011–0.043 μg/L, p &lt; 0.05 for all games). Greater acute S100B increases were significantly associated with greater impact frequency, sum of PLA and PRA, with negligible contributions from physical exertion and muscle damage effects. The high-impact group exhibited greater increases in serum S100B levels at post-games than the low-impact group (high vs. low, 0.043 ± 0.035 μg/L vs. 0.019 ± 0.017 μg/L, p = 0.002). The degree of acute S100B increases was correlated with subconcussive head impact exposure, suggesting that acute astrocyte damage may be induced in an impact-dependent manner. Acute changes in serum S100B levels may become a useful tool in monitoring real-time brain damage in sports
    • …
    corecore