26 research outputs found

    Serum profiles of calcium, phosphorus, magnesium, vitamin D and parathyroid hormone in Caspian horses during different seasons

    Get PDF
    Minerals play an essential role in the normal vital process. Calcium, phosphorus and magnesium are the most abundant minerals. Vitamin D and parathyroid hormone play a key role in regulation of their homeostasis as well. The aim of this study was to evaluate calcium, phosphorus, magnesium, vitamin D and parathyroid hormone on 30 Caspian horses of Guilan Province (south of the Caspian Sea) in two different seasons. So that, 15 stallions and 15 mares were sampled at the age groups ≤ 3 years and > 3 years, respectively. Fasting blood samples were collected twice, in August and January 2015 from jugular vein of horses. Serum calcium, phosphorus and magnesium were measured by colorimetric methods, while 25(OH)D3 and parathyroid hormone were measured by ELISA. The calcium (11.50 vs. 14.25 mg dL-1 ), magnesium (2.13 vs. 3.72 mg dL-1 ) and vitamin D (1.66 vs. 2.48 ng mL-1 ) levels were lower in winter than in summer (P < 0.05). The Caspian horses had higher phosphorus (4.52 vs. 3.26 mg dL-1 ) in winter than in summer (P < 0.05). Effect of sex on the measured parameters was not significant. Effects of age on the calcium, magnesium, vitamin D and parathyroid hormone levels were not significant, but ≤ 3 year - old horses had higher phosphorus (4.63 vs. 3.15 mg dL-1 ) than > 3 year - old ones (P < 0.05). The vitamin D level of mares was higher (3.10 vs. 1.43 ng mL-1 ) in summer than in winter (P < 0.05). Effects of sex, season, age and their interactions on parathyroid hormone were not significant. In conclusion, calcium, phosphorus, magnesium and parathyroid hormone levels in Caspian horses were within their physiological range, but vitamin D was low without any signs of deficiency. The Caspian horses had lower calcium, magnesium and vitamin D levels in winter than in summer

    Natural course of Fabry disease with the p Arg227Ter (pR227*) mutation in Finland: Fast study

    Get PDF
    BackgroundFabry disease is caused by a deficient or an absent alfa‐galactosidase A activity and is an X‐linked disorder that results in organ damage and a shortened life span, especially in males. The severity of the disease depends on the type of mutation, gender, skewed X‐chromosome inactivation, and other still unknown factors.MethodsIn this article, we describe the natural course of a common classic Fabry disease mutation, p.Arg227Ter or p.R227*, in Finland.ResultsFour males and ten females belonged to two extended families. The mean age was 46 years (SD 18.4). Six patients (43%) had cardiac hypertrophy, three patients (21%) had ischemic stroke, and none had severe kidney dysfunction. Three patients had atrial fibrillation; two patients who had atrial fibrillation also had pacemakers. All males over 30 years of age had at least one of the following manifestations: cardiac hypertrophy, stroke, or proteinuria. In females, the severity of Fabry disease varied from classic multiorgan disease to a condition that mimicked the attenuated cardiac variant. No one was totally asymptomatic without any signs of Fabry disease. Cardiac magnetic resonance imaging was performed on nine of 14 patients was the most sensitive for detecting early cardiac manifestations. Five patients (55%) had late gadolinium enhancement‐positive segments.ConclusionCardiac involvement should be effectively detected in females before considering them asymptomatic mutation carriers.</div

    Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week

    Get PDF
    Fabry disease (FD) is a rare X-linked inherited lysosomal storage disorder caused by deficient α-galactosidase A activity that leads to an accumulation of globotriasylceramide (Gb3) in affected tissues, including the heart. Cardiovascular involvement usually manifests as left ventricular hypertrophy, myocardial fibrosis, heart failure, and arrhythmias, which limit quality of life and represent the most common causes of death. Following the introduction of enzyme replacement therapy, early diagnosis and treatment have become essential to slow disease progression and prevent major cardiac complications. Recent advances in the understanding of FD pathophysiology suggest that in addition to Gb3 accumulation, other mechanisms contribute to the development of Fabry cardiomyopathy. Progress in imaging techniques have improved diagnosis and staging of FD-related cardiac disease, suggesting a central role for myocardial inflammation and setting the stage for further research. In addition, with the recent approval of oral chaperone therapy and new treatment developments, the FD-specific treatment landscape is rapidly evolving

    Influence of the initial chemical conditions on the rational design of silica particles

    Get PDF
    The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption
    corecore