758 research outputs found
Joint optimal relay location and power allocation for ultra-wideband-based wireless body area networks
© 2015, Ding et al.; licensee Springer. In this paper, we study the joint optimal relay location and power allocation problem for single-relay-assisted ultra-wideband (UWB)-based wireless body area networks (WBANs). Specifically, to optimize spectral efficiency (SE) for single-relay cooperative communication in UWB-based WBANs, we seek the relay with the optimal location together with the corresponding optimal power allocation. With proposed relay-location-based network models, the SE maximization problems are mathematically formulated by considering three practical scenarios, namely, along-torso scenario, around-torso scenario, and in-body scenario. Taking into account realistic power considerations for each scenario, the optimal relay location and power allocation are jointly derived and analyzed. Numerical results show the necessity of utilization of relay node for the spectral and energy-efficient transmission in UWB-based WBANs and demonstrate the effectiveness of the proposed scheme in particular for the around-torso and in-body scenarios. With the joint optimal relay location and power allocation, the proposed scheme is able to prolong the network lifetime and extend the transmission range in WBANs significantly compared to direct transmission
Incumbent user active area detection for Licensed Shared Access
© 2015 IEEE. Licensed Shared Access is a European standardisation effort which promotes repository based quasi-static hierarchical spectrum sharing. In this scheme the sharing time base is in the order of months if not years. For widespread use of Licensed Shared Access, shrinking the sharing time base is crucial. In this paper we propose a scheme to reduce the sharing time base to seconds or minutes scale. We present a new technique named lightweight Radio Environment Map based on a Kalman Filter derived from geo-location aware spectrum measurements, which can be run at the shared access licensee end. Our objective is to determine the active area of a static or slowly moving incumbent. We consider a challenging scenario where a large fraction of measurements is missing and the available measurements are highly distorted. Performance of our incumbent active area detection approach is evaluated by simulating a low power incumbent in an urban cellular environment. Simulation results show a substantial improvement of missed detection area in comparison to the counterpart that does not use our lightweight Radio Environment Map
Distributed Power Allocation Algorithm for General Authorised Access in Spectrum Access System
© 2019 IEEE. To meet the capacity needs of the next generation wireless communications, U.S. Federal Communications Commission has recently introduced Spectrum Access System. Spectrum is shared between three tiers - Incumbents, Priority Access Licensees (PAL) and General Authorised Access (GAA) Licensees. When the incumbents are absent, PAL and GAA share the spectrum under the constraint that GAA ensure the aggregate interference to PAL is no more than -80 dBm within the PAL protection area. Currently GAA users are required to report their geolocations. However, geolocation is private information that GAA may not be willing to share. We propose a distributed GAA power allocation algorithm that does not require centralised coordination on sharing locations with other GAA users via SAS. We analytically proved the critical point of the interference along the PAL protection area to avoid calculating the interference on every points of the area. We proposed exclusion zone, transitional zone and open zone for GAA users to calculate the self-determined transmit power. Simulation results show that our method meets the interference requirement and achieve more than 90% of capacity approximation to the optimal centralised method, while completely masking the GAA locations
Channel Efficiency Aware Scheduling Algorithm for Real-Time Services in Wireless Networks
In this paper, we consider the problem of scheduling real time services over time-varying wireless links in broad-band wireless networks where an Adaptive Modulation and Coding (AMC) scheme is applied in the physical layer in order to decrease the packet error rate. It is well known that a properly chosen modulation and coding scheme can increase error robustness in the physical layer. However, this is at the expense of higher system complexity and decreased channel efficiency. We present a novel Near Maximum Weighted Bipartite Matching (NMWBM) scheduling algorithm, which schedules real time services in accordance with delay bounds and phys-cal layer modulation and coding modes. Numerical results set in the context of IEEE 802.16 networks show that NMWBM can improve system packet throughput and pro-vide higher channel efficiency compared to the existing Earliest Deadline First scheduling algorithm. NMWBM provides this improved performance while meeting delay bound and packet loss rate requirements of real time ser-vices in broadband wireless networks
Dynamic Bandwidth MCIDS - A Cognitive Solution for MCIDS based UWB Communications
Dynamic bandwidth multicode interleaved direct sequence (MCIDS), an enhanced MCIDS based Ultra-wideband (UWB) application is proposed in this paper, featuring a cognitive transmission bandwidth adaptation without any adverse effect on the data rate. By introducing a specific lowpass filtering and down-sampling into the traditional MCIDS algorithm, this system can decrease the transmission bandwidth into part of its original bandwidth but still be able to recover all the transmitted data from the reduced bandwidth. This solution can efficiently improve the coexistence ability of UWB devices in a cognitive manner without increasing hardware complexity
Optimal spectral efficiency for cooperative UWB based on-body area networks
© 2014 IEEE. In this paper, spectral efficiency (SE) is investigated for cooperative ultra-wideband (UWB) based on-body area networks (OBANs). To optimize SE for single-relay cooperation, an equivalent generic cooperative model in UWB based OBANs is established first. With the proposed model, joint optimal relay location and power allocation for cooperation is then derived to solve the SE maximization problem. Simulation results show that direct transmission is preferable for UWB based OBANs when the transmitter and receiver are located on the same side of the human body. However, the joint optimal cooperative transmission scheme can achieve a significant improvement on SE compared with direct transmission when the transmitter and receiver are located on the different sides of the human body, which indicates that cooperation is more feasible to be applied in this case due to its robustness to the significant path loss
Theoretical analysis of REM-based handover algorithm for heterogeneous networks
© 2013 IEEE. Handover has been a widely studied topic since the beginning of the mobile communications era, but with the advent of another generation, it is worth seeing it with fresh eyes. Data traffic is expected to keep growing as new use cases will coexist under the same umbrella, e.g., vehicle-to-vehicle or massive-machine-type communications. Heterogeneous networks will give way to multi-tiered networks, and mobility management will become challenging once again. Under the current approach, based uniquely on measurements, the number of handovers will soar, so will the signaling. We propose a handover algorithm that employs multidimensional radio-cognitive databases, namely radio environment maps, to predict the best network connection according to the user's trajectory. Radio environment maps have been extensively used in spectrum-sharing scenarios, and recently, some advances in other areas have been supported by them, such as coverage deployment or interference management. We also present a geometric model that translates the 3GPP specifications into geometry and introduce a new framework that can give useful insights into our proposed technique's performance. We validate our framework through Monte Carlo simulations, and the results show that a drastic reduction of at least 10% in the ping-pong handovers can be achieved, thus reducing the signaling needed
Energy-efficient distributed beamforming in UWB based implant body area networks
© 2015 IEEE. In this paper, we investigate a distributed beamforming problem to optimize energy efficiency (EE) in ultra-wideband (UWB) based implant body area networks (IBANs). To evaluate the impact of relay location on the EE, a relay location based cooperative network model is proposed, where multiple on-body relays are employed to assist an implant node to communicate with a BAN coordinator. With the proposed model, the EE optimization problem is mathematically formulated as a non-convex optimization problem. Sequential quadratic programming (SQP) combined with scatter search are applied to find the corresponding optimal solution. Simulation results illustrate that the proposed beamforming scheme outperforms other transmission schemes. A remarkable improvement can be achieved not only in EE but also in spectral efficiency (SE) compared to direct transmission. Moreover, numerical examples show that the relay location has a significant impact on the EE performance
Iteratively reweighted compressive sensing based algorithm for spectrum cartography in cognitive radio networks
© 2014 IEEE. Spectrum cartography is the process of constructing a map showing Radio Frequency signal strength over a finite geographical area. In our previous work we formulated spectrum cartography as a compressive sensing problem and we illustrated how cartography can be used in the context of discovering spectrum holes in space that can be exploited locally in cognitive radio networks. This paper investigates the performance of compressive sensing based approach to cartography in a fading environment where realtime channel estimation is not feasible. To accommodate for lack of channel information we take an iterative approach. We extend the well-known iteratively reweighted ℓ1 minimisation approach by exploiting spatial correlation between two points in space. We evaluate the performance in an urban environment where Rayleigh fading is prominent. Our numerical results show a significant improvement in the probability of accurately making a spectrum sensing decision, in comparison to the well-known weighted approach and the traditional compressive sensing based method
- …