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Abstract— Dynamic bandwidth multicode interleaved direct
sequence (MCIDS), an enhanced MCIDS based Ultra-wideband
(UWB) application is proposed in this paper, featuring a cognitive
transmission bandwidth adaptation without any adverse effect
on the data rate. By introducing a specific lowpass filtering
and down-sampling into the traditional MCIDS algorithm, this
system can decrease the transmission bandwidth into part of its
original bandwidth but still be able to recover all the transmitted
data from the reduced bandwidth. This solution can efficiently
improve the coexistence ability of UWB devices in a cognitive
manner without increasing hardware complexity.

I. INTRODUCTION

Ultra-wideband (UWB), based on the description by the
Federal Communications Commission (FCC), is a wireless
transmission technology that spreads transmitted information
over a large bandwidth. The UWB technology employs an
unlicensed spectrum between 3.1-10.6 GHz allocated by the
FCC. This spectrum can be shared by multiple users to achieve
an efficient use of radio bandwidth. There are many UWB
applications, including high data rate, low power wireless
connectivity, and lower data rate but longer-range applications,
such as ranging and imaging systems. Currently UWB has
two main development directions, one is the direct sequence
(DS) based UWB [1]. Another is the multi-band orthogonal
frequency division multiplexing (MB-OFDM) [2]. For the DS
based UWB, as it occupies a large bandwidth at the same
time, it is unavoidable to overlap with existing narrowband
transmissions, causing interference between different systems.

As a solution to the above coexistence issue, cognitive
radio (CR) is currently receiving more and more attention
worldwide. Cognitive radio was first proposed in [3], with
which spectrum utilization can be improved significantly. The
authors in [4] reviewed CR as an environmentally aware
extension of software defined radio (SDR). Any radio with the
capability to hop around the spectrum for optimizing power,
range and required data rates can satisfy the definition of CR.
Cognitive radio adapts SDR’s ability of changing communi-
cations protocols, and meanwhile adds another dimension -
the capability to perceive the surrounding environment and
learn from its experience. The learning ability of recognizing
dead zones, interference and usage patterns sets CR apart
conceptually from other spectrum management techniques.

Until now most research on cognitive DS based UWB has
focused on how to generate an UWB pulse for matching the
FCC spectral mask [5], [6]. Traditional MCIDS spreading
[7] has already given a solution to resolve intersymbol inter-
ference (ISI). However, there has been no method proposed
any method to avoid interference with other devices. This
paper extends the traditional MCIDS algorithm and proposes
a solution called Dynamic Bandwidth MCIDS that enables
MCIDS spreading algorithm to receive and recover the whole
user data from part of the received signal bandwidth. Since
this solution is implemented in software without increasing
hardware complexity of the system, it provides an opportunity
for cognitive UWB transmission in a simple and efficient way.

This paper is organized as follows. In Section II, an en-
hanced MCIDS based UWB system model is introduced. In
Section III, discussions on the proposed system model and
simulation results are included. Conclusions are drawn in
Section IV.

II. ALGORITHM OF DYNAMIC BANDWIDTH
MCIDS

Original MCIDS spreads a signal for a block of N data bits
a0, a1, . . . , aN−1 with bit duration Tb, where, ai = ±1 can be
described mathematically as [7].

N−1∑
i=0

P−1∑
j=−P0

bi,jg(t − iTc − jNTc) =

N−1∑
i=0

ai

P−1∑
j=−P0

ci[(j)P ]g(t − iTc − jNTc)

(1)

where ci[(j)P ] is the orthogonal spreading sequence with
period P , ci(j) = 0, 1, . . . P − 1 is one period of this
periodic sequence with duration Tc and (j)P denotes j modulo
P , g(t) is defined as a unit amplitude pulse which is zero
outside the interval [0, Tc]. An example of MCIDS spread-
ing is presented in Fig.1 [8], where (a) shows the spread
signal obtained by spreading symbol +1 with its correspond-
ing spreading code {+1,+1, . . . , +1}, (b) shows the spread
signal obtained by spreading signal with its corresponding
spreading code {−1,+1, . . . ,−1} and (c) is obtained in the
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same way. Altogether a block interleaver then can output
data as {a0, b0, c0, . . . , a1, b1, c1, . . . , aN−1, bN−1, cN−1 . . .}
shown in (d). A length P0 cyclic prefix (CP ) is also added
in this example, which is the same as the last segment of the
block interleaved signal.

Fig. 1. Example of MCIDS spreading.

Now let us introduce an enhancement over the original
MCIDS spreading. This enhanced system enables signal re-
covery from part of the original bandwidth of the MCIDS
system by using a wider signal impulse. The width of the
impulse is controlled by a lowpass filter with bandwidth |f | =
2−m (1/Tc), where m = 0, 1, . . . ...log2N . For each impulse,
decreasing its bandwidth to 2−m also means increasing its
width to 2m. This leads to overlapping of successive impulses.
Takingm = 0, 1, 2 for example, after spectral shaping and
matched filtering, each impulse is reshaped in the time domain
as illustrated in Fig. 2. Note that the limited bandwidth must
be exactly 2−m times of the original bandwidth to facilitate
further processing.

In Fig. 2, when m = 0, at sampling points, no ISI is
produced since the impulse is zero at integer multiples of Tc.
The MCIDS signals are fully passed in the frequency domain.
This condition can be considered as that of the unfiltered
MCIDS signal, and signal processing can be performed in the
traditional way [8]. When m = 1, however, signal bandwidth
is reduced to half of the original bandwidth. Each input
impulse has nonzero amplitudes at integer multiples of Tc.
When m = 2, signal bandwidth is reduced to quarter of
the original bandwidth. In other words, when impulse is
filtered, each output impulse sample is a contribution of several
impulses. The signal in Fig.1 becomes the spectral shaped
signal shown in Fig. 3.

Fig.4 shows the equivalent lowpass filtering model for this

Fig. 2. Example fo filtered impulses, (a) m = 0, with full bandwidth, (b) m
=1, impulse with half bandwidth (c) m =2, impulse with quarter bandwidth

enhanced system.
In order to focus on investigating the possibility of re-

covering the signal though partial bandwidth, channel h(t)
is assumed to be a single path slow fading channel and the
received signal can be expressed as

r (t) = x (t) ∗ h (t) + z (t) (2)

where z(t) is the additive white Gaussian noise (AWGN) with
double sided power spectral density N0. The received signal is
first sampled with sampling period Tc, then passed though the
matched filter. The filtered signal sequence can be described
as:

r (n) =
N−1∑
i=0

P−1∑
j=−P0

αi,j×

i+2m

−1∑
k=i−2m+1

akck [(j)P ] g [(n − ic − jN) Tc] + zn

(3)

where zN is the white discrete-time Gaussian noise. αi,j are
tap coefficients that relate to the filter and channel response.
Since slow channel fading is assumed, αi,j can be treated as
constants. Note that a−1, c−1 = aN−1cN−1 due to the cyclic
prefix in front of each signal block.

Despread operation in this system is the same as in the orig-
inal MCIDS system [7]. Received samples are filled column-
wise into a matrix. First P0 columns of the matrix are deleted
in order to remove the CP . To despread, samples are originally
read out row-wise. However, in this system, samples are kept
in the matrix for further processing. The remainder of the
N × P matrix is illustrated is Fig.5, taking

Ei,j =

i+2m−1∑
k=i−2m(i−1)

akck [(j)P ]
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Fig. 3. Spectral shaped signal sequence

Fig. 4. block diagram of equivalent lowpass system model

Based on Equation (3), each received sample contains infor-
mation of nearby 2m original samples. Therefore only N/2m

samples are required to recover all transmitted data. Then, by
down-sampling the above matrix in a row-wise manner by 2m,
each sampled unit in the matrix can be expressed as:

r (l + 1, j + 1) = α2m,j

2m(l+1)∑
k=2m(l−1)−1

akck [(j)P ] + Z2ml,j

(4)
where l = 0, 1, . . . , 2−mN − 1; j = 0, 1, . . . , P − 1.Down-
sampled matrix rij with size N/2m × P is shown in Fig. 6.
The dispreading code is defined as

di [n] =
P−1∑
j=0

ci [j] (5)

Fig. 5. Despread samples stored in matrix

Fig. 6. Down-sampled matrix

For detection of each bit ai. Each row of the matrix is
circularly correlated with di [n]. Dispread signal Uil are over-
lapped components with contributions from nearby l samples.
Mathematically, we have

Uil =
P−1∑
j=0

r (l + 1, j + 1) ci [(j)P ] (6)

Suppose that Ui are the decision variables. To collect energy
from all lsamples, we have

Ui = Re

⎡
⎣2−m∑

l=1

Uil · α∗

2m,j

⎤
⎦

= Re

2−mN∑
l=1

P−1∑
j=0

α∗

2ml,jα2ml,j

2m(l+1)−1∑
k=2m(l−1)

akck [(j)P ] ci [(j)P ]

+ Re

2−mN∑
l=1

α∗

2mi,j

P−1∑
j=0

z2mi,j

(7)

Because ci [(j)P ] are orthogonal sequences, they satisfy

2m(l+1)−1∑
k=2m(l−1)

akck [(j)P ] ci [(j)P ] =

{
P i=k=1
0 otherwise

(8)

The decision variable Ui become

Ui = P

2−mN∑
l=1

P−1∑
j=0

|α2ml,j |2 ai + Re

2−mN∑
l=1

α∗

2mi,j

P−1∑
j=0

zmi,j
2

(9)
Therefore, all the symbols are fully recovered from 1/2m

of the original bandwidth. The calculation process of Ui using
[6], [7] is shown in Fig. 7.

III. DISCUSSION AND RESULTS ANALYSIS

In dynamic bandwidth MCIDS based UWB system, the con-
stant m determines both filtered bandwidth |f | = 2−m (1/Tc)
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Fig. 7. Despreading and combining structure

in transmitter end and down-sampling rate 2m in receiver end.
Value of m can be chosen according to applications and/or
channel environment.

In the ideal conditions, a higher value of m will efficiently
decrease the wireless transfer bandwidth without risking data
rate loss. Thus systems with a high value of m are very
suitable for the conditions where multiple wireless devices
share the bandwidth. A lower transmit bandwidth improves
their coexistence ability with other devices while retaining a
high data rate.

On the other hand, a lower value of m means a higher
transfer bandwidth. This lower value leads to more frequent
sampling at the receiver end. Since each date symbol is carried
out by more signal samples, collecting more samples will
gather more energy and thus increase the processing gain.
However, a wider bandwidth causes coexistence issues.

This paper focuses on proving that it is possible to fully
recover data under a variable transmission bandwidth in an
MCIDS UWB system, with the assumptions of a slow fading
single path channel and interference with white Gaussian
noise. Also, the filter in this model is only a lowpass filter.
Thus, we can dynamically select the signal bandwidth to
provide a solution to the coexistence issue.

In our future work, a multipath fading channel and other
interference factors will be considered to reflect more practical
scenarios. In addition, different filtering methods such as
highpass, bandpass or bandstop filters will be considered to
realize more efficient bandwidth adaptation. Related signal
recovering algorithms will be also investigated.

Simulations based on the algorithm and architecture of the
lowpass filtering MCIDS system has been also performed.
In these simulations, Tc = 4 × 10−8, Hadamard sequences
are employed as spreading codes with P = 16, the length
of CP , P0 = 4, and a root raised cosine filter is used for
lowpass filtering, with m = 0, 1, 2. Also, tap coefficients αi,j

are gained by sending training sequence which is known by
both transmitter and receiver. Fig. 8 shows the system bit error
rate curves in white Gaussian noise channel.

Based on the results in Fig. 8, the bit error rates under
three transmission bandwidths are very close to each other.
These results prove that the enhanced MCIDS algorithm which
proposed in this paper is able to fully recover signals under
different bandwidth without jeopardy in performance. Note
that the 2dB losses in each curve in Fig. 8 are caused by
CP. This is comfirmed by Fig. 9, which shows the system
performance when the same parameters as those in Fig 8 are
used but no CP is added.
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Fig. 8. Performance with different transmission bandwidth
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Fig. 9. Performance without cyclic prefix

IV. CONCLUSIONS

The dynamic bandwidth MCIDS based UWB system pro-
posed in this paper enables full signal recovery under 1/2, 1/4
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or less of the original transmission bandwidth. Therefore,
with filtering, sampling, circular dispreading and combin-
ing, this enhanced system is able to dynamically adjust its
transmission bandwidth without deceasing its data rate or
increasing hardware complexity. Unlike other cognitive UWB
approaches that try to generate specific UWB impulse under
FCC spectrum mask, this paper extended tradition MCIDS
algorithm to achieve lossless bandwidth adjustment and thus
provides another efficient cognitive solution for UWB.
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