102 research outputs found

    Hyper-complex four-manifolds from the Tzitz\'eica equation

    Full text link
    It is shown how solutions to the Tzitz\'eica equation can be used to construct a family of (pseudo) hyper-complex metrics in four dimensions.Comment: To be published in J.Math.Phy

    Twistor theory of hyper-K{\"a}hler metrics with hidden symmetries

    Full text link
    We briefly review the hierarchy for the hyper-K\"ahler equations and define a notion of symmetry for solutions of this hierarchy. A four-dimensional hyper-K\"ahler metric admits a hidden symmetry if it embeds into a hierarchy with a symmetry. It is shown that a hyper-K\"ahler metric admits a hidden symmetry if it admits a certain Killing spinor. We show that if the hidden symmetry is tri-holomorphic, then this is equivalent to requiring symmetry along a higher time and the hidden symmetry determines a `twistor group' action as introduced by Bielawski \cite{B00}. This leads to a construction for the solution to the hierarchy in terms of linear equations and variants of the generalised Legendre transform for the hyper-K\"ahler metric itself given by Ivanov & Rocek \cite{IR96}. We show that the ALE spaces are examples of hyper-K\"ahler metrics admitting three tri-holomorphic Killing spinors. These metrics are in this sense analogous to the 'finite gap' solutions in soliton theory. Finally we extend the concept of a hierarchy from that of \cite{DM00} for the four-dimensional hyper-K\"ahler equations to a generalisation of the conformal anti-self-duality equations and briefly discuss hidden symmetries for these equations.Comment: Final version. To appear in the August 2003 special issue of JMP on `Integrability, Topological Solitons, and Beyond

    Multidimensional integrable systems and deformations of Lie algebra homomorphisms

    Full text link
    We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti--self--dual Yang--Mills equations with a gauge group Diff(S1)(S^1).Comment: 14 pages. An example of a reduction to the Beltrami equation added. New title. Final version, published in JM

    Scalar--Flat Lorentzian Einstein--Weyl Spaces

    Full text link
    We find all three-dimensional Einstein--Weyl spaces with the vanishing scalar curvatureComment: 4 page

    `Interpolating' differential reductions of multidimensional integrable hierarchies

    Full text link
    We transfer the scheme of constructing differential reductions, developed recently for the case of the Manakov-Santini hierarchy, to the general multidimensional case. We consider in more detail the four-dimensional case, connected with the second heavenly equation and its generalization proposed by Dunajski. We give a characterization of differential reductions in terms of the Lax-Sato equations as well as in the framework of the dressing method based on nonlinear Riemann-Hilbert problem.Comment: Based on the talk at NLPVI, Gallipoli, 15 page

    Solitons and admissible families of rational curves in twistor spaces

    Full text link
    It is well known that twistor constructions can be used to analyse and to obtain solutions to a wide class of integrable systems. In this article we express the standard twistor constructions in terms of the concept of an admissible family of rational curves in certain twistor spaces. Examples of of such families can be obtained as subfamilies of a simple family of rational curves using standard operations of algebraic geometry. By examination of several examples, we give evidence that this construction is the basis of the construction of many of the most important solitonic and algebraic solutions to various integrable differential equations of mathematical physics. This is presented as evidence for a principal that, in some sense, all soliton-like solutions should be constructable in this way.Comment: 15 pages, Abstract and introduction rewritten to clarify the objectives of the paper. This is the final version which will appear in Nonlinearit

    Interpolating Dispersionless Integrable System

    Full text link
    We introduce a dispersionless integrable system which interpolates between the dispersionless Kadomtsev-Petviashvili equation and the hyper-CR equation. The interpolating system arises as a symmetry reduction of the anti--self--dual Einstein equations in (2, 2) signature by a conformal Killing vector whose self--dual derivative is null. It also arises as a special case of the Manakov-Santini integrable system. We discuss the corresponding Einstein--Weyl structures.Comment: 11 pages. New title, some errors corrected, section 5 removed. Final version, to appear in J. Phys.

    Strominger--Yau--Zaslow geometry, Affine Spheres and Painlev\'e III

    Full text link
    We give a gauge invariant characterisation of the elliptic affine sphere equation and the closely related Tzitz\'eica equation as reductions of real forms of SL(3, \C) anti--self--dual Yang--Mills equations by two translations, or equivalently as a special case of the Hitchin equation. We use the Loftin--Yau--Zaslow construction to give an explicit expression for a six--real dimensional semi--flat Calabi--Yau metric in terms of a solution to the affine-sphere equation and show how a subclass of such metrics arises from 3rd Painlev\'e transcendents.Comment: 38 pages. Final version. To appear in Communications in Mathematical Physic

    Solvable vector nonlinear Riemann problems, exact implicit solutions of dispersionless PDEs and wave breaking

    Full text link
    We have recently solved the inverse spectral problem for integrable PDEs in arbitrary dimensions arising as commutation of multidimensional vector fields depending on a spectral parameter λ\lambda. The associated inverse problem, in particular, can be formulated as a non linear Riemann Hilbert (NRH) problem on a given contour of the complex λ\lambda plane. The most distinguished examples of integrable PDEs of this type, like the dispersionless Kadomtsev-Petviashivili (dKP), the heavenly and the 2 dimensional dispersionless Toda equations, are real PDEs associated with Hamiltonian vector fields. The corresponding NRH data satisfy suitable reality and symplectic constraints. In this paper, generalizing the examples of solvable NRH problems illustrated in \cite{MS4,MS5,MS6}, we present a general procedure to construct solvable NRH problems for integrable real PDEs associated with Hamiltonian vector fields, allowing one to construct implicit solutions of such PDEs parametrized by an arbitrary number of real functions of a single variable. Then we illustrate this theory on few distinguished examples for the dKP and heavenly equations. For the dKP case, we characterize a class of similarity solutions, a class of solutions constant on their parabolic wave front and breaking simultaneously on it, and a class of localized solutions breaking in a point of the (x,y)(x,y) plane. For the heavenly equation, we characterize two classes of symmetry reductions.Comment: 29 page

    A Comparison of the LVDP and {\Lambda}CDM Cosmological Models

    Full text link
    We compare the cosmological kinematics obtained via our law of linearly varying deceleration parameter (LVDP) with the kinematics obtained in the {\Lambda}CDM model. We show that the LVDP model is almost indistinguishable from the {\Lambda}CDM model up to the near future of our universe as far as the current observations are concerned, though their predictions differ tremendously into the far future.Comment: 6 pages, 5 figures, 1 table, matches the version to be published in International Journal of Theoretical Physic
    corecore