18 research outputs found

    Preimplantation genetic diagnosis in mitochondrial DNA disorders: Challenge and success

    No full text
    Background Mitochondrial or oxidative phosphorylation diseases are relatively frequent, multisystem disorders; in about 15% of cases they are caused by maternally inherited mitochondrial DNA (mtDNA) mutations. Because of the possible severity of the phenotype, the lack of effective treatment, and the high recurrence risk for offspring of carrier females, couples wish to prevent the transmission of these mtDNA disorders to their offspring. Prenatal diagnosis is problematic for several reasons, and concern the often poor correlation between mutation percentages and disease severity and the uncertainties about the representativeness of a fetal sample. A new option for preventing transmission of mtDNA disorders is preimplantation genetic diagnosis (PGD), which circumvents these problems by transferring an embryo below the threshold of clinical expression. Methods We present the data on nine PGD cycles in four female carriers of mitochondrial diseases: three mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) (m.3243A>G), and one Leigh (m.8993T>G). Our threshold for transfer after PGD is 15% for the m.3243A>G mutation and 30% for the m.8993T>G mutation. Results All four female carriers produced embryos eligible for transfer. The m.8993T>G mutation in oocytes/embryos showed more skewing than the m.3243A>G. In about 80% of the embryos the mutation load in the individual blastomeres was fairly constant (interblastomere differences <10%). However, in around 11% (in embryos with the m.3243A>G mutation only), the mutation load differed substantially (>15%) between blastomeres of a single embryo, mostly as a result of one outlier. The m.8993T>G carrier became pregnant and gave birth to a healthy son. Conclusions PGD provides carriers of mtDNA mutations the opportunity to conceive healthy offspring

    BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients

    No full text
    To date, more than 300 distinct small deletions, insertions and point mutations, mostly leading to premature termination of translation, have been reported in the breast/ovarian-cancer susceptibility gene BRCA1. The elevated frequencies of some mutations in certain ethnic subpopulations are caused by founder effects, rather than by mutation hotspots. Here we report that the currently available mutation spectrum of BRCA1 has been biased by PCR-based mutation-screening methods, such as SSCP, the protein truncation test (PTT) and direct sequencing, using genomic DNA as template. Three large genomic deletions that are not detected by these approaches comprise 36% of all BRCA1 mutations found in Dutch breast-cancer families to date. A 510-bp Alu- mediated deletion comprising exon 22 was found in 8 of 170 breast-cancer families recruited for research purposes and in 6 of 49 probands referred to the Amsterdam Family Cancer Clinic for genetic counselling. In addition, a 3,835-bp Alu-mediated deletion encompassing exon 13 was detected in 6 of the 170 research families, while an deletion of approximately 14 kb was detected in a single family. Haplotype analyses indicated that each recurrent deletion had a single common ancestor
    corecore