129 research outputs found

    Identification and Characterization of a Novel Multipotent Sub-Population of Sca-1+ Cardiac Progenitor Cells for Myocardial Regeneration

    Get PDF
    The cardiac stem/progenitor cells from adult mice were seeded at low density in serum-free medium. The colonies thus obtained were expanded separately and assessed for expression of stem cell antigen-1 (Sca-1). Two colonies each with high Sca-1 (CSH1; 95.9%; CSH2; 90.6%) and low Sca-1 (CSL1; 37.1%; CSL2; 17.4%) expressing cells were selected for further studies. Sca-1⁺ cells (98.4%) isolated using Magnetic Cell Sorting System (MACS) from the hearts were used as a control. Although the selected populations were similar in surface marker expression (low in c-kit, CD45, CD34, CD31 and high in CD29), these cells exhibited diverse differentiation potential. Unlike CSH1, CSH2 expressed Nanog, TERT, Bcrp1, Nestin, Musashi1 and Isl-1, and also showed differentiation into osteogenic, chondrogenic, smooth muscle, endothelial and cardiac lineages. MACS sorted cells exhibited similar tendency albeit with relatively weaker differentiation potential. Transplantation of CSH2 cells into infarcted heart showed attenuated infarction size, significantly preserved left ventricular function and anterior wall thickness, and increased capillary density. We also observed direct differentiation of transplanted cells into endothelium and cardiomyocytes.The cardiac stem/progenitor cells isolated by a combined clonal selection and surface marker approach possessed multiple stem cell features important for cardiac regeneration

    Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus

    Get PDF
    Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as essential for A-motility. RomR localizes in a bipolar, asymmetric pattern with a large cluster at the lagging cell pole. The large RomR cluster relocates to the new lagging pole in parallel with cell reversals. Dynamic RomR localization is essential for cell reversals, suggesting that RomR relocalization induces the polarity switching of the A-engine. The analysis of RomR mutants shows that the output domain targets RomR to the poles and the receiver domain is essential for dynamic localization. The small GTPase MglA establishes correct RomR polarity, and the Frz two-component system regulates dynamic RomR localization. FrzS localizes with Tfp at the leading pole and relocates in an Frz-dependent manner to the opposite pole during reversals; FrzS and RomR localize and oscillate independently. The Frz system synchronizes these oscillations and thus the synchronous polarity switching of the motility machineries

    Advanced maturation of human cardiac tissue grown from pluripotent stem cells

    Get PDF
    Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1-6. However, the predictive power of these models is presently limited by the immature state of the cells1, 2, 5, 6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force-frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.The authors acknowledge funding support from the National Institutes of Health of the USA (NIBIB and NCATS grant EB17103 (G.V.-N.); NIBIB, NCATS, NIAMS, NIDCR and NIEHS grant EB025765 (G.V.-N.); NHLBI grants HL076485 (G.V.-N.) and HL138486 (M.Y.); Columbia University MD/PhD program (S.P.M., T.C.); University of Minho MD/PhD program (D.T.); Japan Society for the Promotion of Science fellowship (K.M.); and Columbia University Stem Cell Initiative (D.S., L.S., M.Y.). We thank S. Duncan and B. Conklin for providing human iPSCs, M.B. Bouchard for assistance with image and video analysis, and L. Cohen-Gould for transmission electron microscopy services.info:eu-repo/semantics/publishedVersio

    Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution

    Get PDF
    In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell

    Regulatory Response to Carbon Starvation in Caulobacter crescentus

    Get PDF
    Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Profile of spray-dried emulsions stabilized by milk proteins

    No full text
    W opracowaniu przedstawiono zagadnienia z zakresu suszenia rozpyłowego emulsji typu olej w wodzie, stabilizowanych białkami mleka. Omówiono rolę składników emulsji (cukrów i białek mleka) w tworzeniu matrycy cząstek podczas suszenia rozpyłowego oraz opisano te cechy sproszkowanych emulsji, które są powiązane z formą proszku (zwilżalność, sypkość, podatność na zbrylanie). Przedstawiono dane dotyczące efektywności mikrokapsułkowania lipidów, tłuszczu wolnego na powierzchni suchych cząstek i odtwarzania emulsji pierwotnej po rekonstytucji proszku w wodzie, w aspekcie składu emulsji poddanej suszeniu rozpyłowemu. Białka mleka pełnią głównie rolę koloidu stabilizującego emulsję, a cukry rolę wypełniacza w tworzeniu stałej matrycy proszku. Kazeina i kazeiniany, ze względu na większą stabilność cieplną i lepsze właściwości powierzchniowe w porównaniu z białkami serwatkowymi, zapewniają większą trwałość suszonych emulsji. Skuteczną matrycę ścianki, zapewniającą efektywne kapsułkowanie o jak najmniejszym udziale tłuszczu wolnego na powierzchni cząstek, stanowią szkliste struktury niskocząsteczkowych cukrów, formujące się na skutek szybkiego usuwania wody podczas suszenia.This review highlights the issues referring to spray drying of oil-in-water emulsions that are stabilized by milk proteins. Discussed were the role of emulsion components (sugars and milk proteins) in forming a matrix of particles during the spray drying process, and described were those properties of powdered emulsions that were associated with the powder form (wettability, flowability, caking susceptibility). Presented were the data on the micro-encapsulation efficiency of lipids, free fat on the surface of dry particles, as well as on the reproduction of parent emulsion after the reconstitution of powder in water from the point of view of the composition of emulsion that underwent spray-drying. Milk proteins play mainly the role of an emulsion stabilizing colloid, whereas sugars play the role of filler when a solid powder matrix is being formed. Compared to whey proteins, caseins and caseinians show a higher thermal stability and better surface properties; therefore, they provide a better stability of dried emulsions. Glassy structures of low-molecular-weight sugars that form because water is quickly removed during drying constitute an effective wall matrix, which guarantees efficient encapsulation with the possible lowest content of free fat on the surface of particles
    corecore