658 research outputs found

    Universal Features of the Excitation Spectrum in Generalized Gibbs Distribution Ensemble

    Full text link
    It is shown that excitation spectra of Generalized Gibbs Ensembles (GGE) of one-dimensional integrable models with isotopic symmetry contain universal features insensitive to details of the distribution. Namely, the low energy limit of the subsystem of isotopic (for instance, spin) excitations is described by the effective action of a ferromagnet at thermodynamic equilibrium with a single temperature and with the stiffness determined by the initial conditions. The condition of universality is that the entropy per excited particle is small.Comment: 9 pages, 2 figures; revised versio

    Dynamical Crystallization in the Dipole Blockade of Ultracold Atoms

    Full text link
    We describe a method for controlling many-body states in extended ensembles of Rydberg atoms, forming crystalline structures during laser excitation of a frozen atomic gas. Specifically, we predict the existence of an excitation number staircase in laser excitation of atomic ensembles into Rydberg states. Each step corresponds to a crystalline state with a well-defined of regularly spaced Rydberg atoms. We show that such states can be selectively excited by chirped laser pulses. Finally, we demonstarte that, sing quantum state transfer from atoms to light, such crystals can be used to create crystalline photonic states and can be probed via photon correlation measurements

    Microscopic Electron Models with Exact SO(5) Symmetry

    Full text link
    We construct a class of microscopic electron models with exact SO(5) symmetry between antiferromagnetic and d-wave superconducting ground states. There is an exact one-to-one correspondence between both single-particle and collective excitations in both phases. SO(5) symmetry breaking terms can be introduced and classified according to irreducible representations of the exact SO(5) algebra. The resulting phase diagram and collective modes are identical to that of the SO(5) nonlinear sigma model.Comment: 5 pages, LATEX, 4 eps fig

    Decay of superfluid currents in a moving system of strongly interacting bosons

    Full text link
    We analyze the stability and decay of supercurrents of strongly interacting bosons on optical lattices. At the mean-field level, the system undergoes an irreversible dynamic phase transition, whereby the current decays beyond a critical phase gradient that depends on the interaction strength. At commensurate filling the transition line smoothly interpolates between the classical modulational instability of weakly interacting bosons and the equilibrium Mott transition at zero current. Below the mean-field instability, the current can decay due to quantum and thermal phase slips. We derive asymptotic expressions of the decay rate near the critical current. In a three-dimensional optical lattice this leads to very weak broadening of the transition. In one and two dimensions the broadening leads to significant current decay well below the mean-field critical current. We show that the temperature scale below which quantum phase slips dominate the decay of supercurrents is easily within experimental reach.Accepted manuscrip

    Pi-phases in balanced fermionic superfluids on spin-dependent optical lattices

    Full text link
    We study a balanced two-component system of ultracold fermions in one dimension with attractive interactions and subject to a spin-dependent optical lattice potential of opposite sign for the two components. We find states with different types of modulated pairing order parameters which are conceptually similar to pi-phases discussed for superconductor-ferromagnet heterostructures. Increasing the lattice depth induces sharp transitions between states of different parity. While the origin of the order parameter oscillations is similar to the FFLO phase for paired states with spin imbalance, the current system is intrinsically stable to phase separation. We discuss experimental requirements for creating and probing these novel phases.Comment: 4.3 pages, 4 figures, published versio
    corecore