23 research outputs found

    Antiarrhythmic agents

    Get PDF
    Los fármacos antiarritmicos son un grupo heterogéneo de sustancias que constituyen, junto con la estimulación eléctrica programada, la implantación de marcapasos, la cirugía y la fulguración, la base de la terapéutica antiarritmica actual. La mayor parte de las arritmias observadas en la práctica clinica son debidas al fenómeno de reentrada, que representa una alteración en la conducción del impulso cardiaco. Para que se produzca una arritmia por reentrada debe: a) existir un obstáculo anatómico o funcional que defina el circuito de reentrada, b) existir un área de bloqueo unidireccional y c) el tiempo que el impulso tarda en recorrer el circuito debe ser mayor que el período refractario. Teóricamente, estas arritmias pueden ser tratadas mediante dos tipos diferentes de maniobras: 1) disminuyendo la velocidad de conducción, de tal manera que convirtamos el área de bloqueo unidireccional en bidireccional. Los fánnacos antiarritmicos que producen este efecto son aquellos que actúan inhibiendo la corriente rápida de entrada de sodio (INa), o fánnacos antiarritmicos del grupo 1. 2) Prolongando el período refractario, de tal modo que el frente de onda del circuito se encuentre con tejido inexcitable. Recientes estudios clínicos (CAST, 1989) han puesto en tela de juicio la eficacia de los fánnacos antiarrítmicos del grupo 1, dado que dos de los fánnacos más potentes de este grupo (flecainida y encainida) no sólo no disminuyeron, sino que aumentaron la mortalidad en pacientes con infarto de miocardio previo y que presentaban más de 7 extrasístoles ventriculares tempranos. Estos resultados obligaron a un replanteamiento en la terapéutica antiarritmica, y condujo a diferentes grupos de investigación a la síntesis y caracterización de nuevos fármacos capaces de prolongar el periodo refractario, o fármacos antiarritmicos del grupo m. El fármaco antiarritmico "ideal" de este grupo sería aquél que produjera una mayor prolongación del período refractario a frecuencias de estimulación más rápidas (más efectivo en taquicardia). Sin embargo, ningún fármaco antiarritmico del grupo m presenta este perfil farmacológico. Por el contrario, son más eficaces a frecuencias lentas (durante la bradiacardia) que a frecuencias rápidas. La excepción es la arniodarona (el primer fánnaco antiarritmico de este grupo, con propie dades antiarritmicas del grupo 1, B-bloqueantes y antagonistas del calcio) que prolonga el período refractario a cualquier frecuencia de estimulación: es independiente de la frecuencia. La utilización de técnicas de Biología Molecular que nos permitan conocer la estructura de los canales iónicos involucrados en la r epolarización del potencial de acción, así como estudios realizados en miocitos cardiacos humanos nos proporcionarán una gran ayuda para diseñar nuevos fánnacos antiarritmicos sobre bases más racionales.Antiarchythmic agents are a very hoterogenous group of drugs which, together with programmed electrical stimulation, pacemaker implantation, ablation and surgery, constitute the basis of the antiarrhythmic therapy. Most clinical arrhythmias are due to reentry, which represents an alteration of the cardiac impulse. The basis for reentry are: a) an anatornical or functional obstacle which defines the circus movement, b) an area of unidirectional block, and c) the length of path must exceed the wave length deterrnined by effective refractoriness. Theoretically, reentrant arrhythmias can be suppressed by: 1) decreasing the conduction velocity, so that the area of unidirectional block becomes an area or bidirectional block. Antiaarrhythmic drugs acting by this mechanism include those that decrease the fast inward sodium current (INal), the so-caHed class 1 antiarrythmic drugs. 2) Lengthenin of the effective refractory period, in such a way that the wavefront encroaches in its own refractory period and the cardiac impulse cannot be propagated anymore. Drugs that selectively prolonged the effective refractory period are included as class III antiarrhytmics. Recent clinical studies (CAST, 1989) have warned the scientific community about the effectiveness and safety of class 1 antiarrhythmic drugs, since two of them (flecainide and encainide) did not de crease, but increased mortality in patients which previous myocardial infarction and asymptomatic ventricular extrasystoles. These results led numerous work groups and pharmaceutical companies to develop new class III antiarrhythmic drugs. The "ideal" class III antiarrhythmic drug would be that which produced rninirnal effect in sinus rhythm but produced a marked prolongationof the effective refractory period when the heart rate increased (i.e. during tachycardia). However, none of the available class III antiarrhythmic drugs exhibit this pharrnacological profile. On the contrary, they prolonged cardiac refractoriness more at low frequencies of stimulation (bradycardia) than at higher stimulation rates. Only arniodarone, the first class ID antiarrhythmic drug, which exhibits class 1, 11 (B-adrenoceptor blockade) and IV (calcium antagonist) properties produced a prolongation of the effective refractory period at aH cardiac rates, i.e. its effect is frequency-independent. The use of Molecular Biology techniques which allow us to determine the structure of the ionic channels involved in the repolarization of the cardiac action potential, as well as the studies performed in isolated human cardiac myocytes will afford the basis for a more rational design of new antiarrhythmic drugs

    Novel PITX2 Homeodomain-Contained Mutations from ATRIAL Fibrillation Patients Deteriorate Calcium Homeostasis

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the human population, with an estimated incidence of 1¿2% in young adults but increasing to more than 10% in 80+ years patients. Pituitary Homeobox 2, Paired Like Homeodomain 2 (PITX2c) loss-of-function in mice revealed that this homeodomain (HD)-containing transcription factor plays a pivotal role in atrial electrophysiology and calcium homeostasis and point to PITX2 as a candidate gene for AF. To address this issue, we recruited 31 AF patients for genetic analyses of both the known risk alleles and PITX2c open reading frame (ORF) re-sequencing. We found two-point mutations in the homedomain of PITX2 and three other variants in the 5¿untranslated region. A 65 years old male patient without 4q25 risk variants but with recurrent AF displayed two distinct HD-mutations, NM_000325.5:c.309G>C (Gln103His) and NM_000325.5:c.370G>A (Glu124Lys), which both resulted in a change within a highly conserved amino acid position. To address the functional impact of the PITX2 HD mutations, we generated plasmid constructs with mutated version of each nucleotide variant (MD4 and MD5, respectively) as well as a dominant negative control construct in which the PITX2 HD was lacking (DN). Functional analyses demonstrated PITX2c MD4 and PITX2c MD5 decreased Nppa-luciferase transactivation by 50% and 40%, respectively, similar to the PITX2c DN (50%), while Shox2 promoter repression was also impaired. Co-transactivation with other cardiac-enriched co-factors, such as Gata4 and Nkx2.5, was similarly impaired, further supporting the pivotal role of these mutations for correct PITX2c function. Furthermore, when expressed in HL1 cardiomyocyte cultures, the PITX2 mutants impaired endogenous expression of calcium regulatory proteins and induced alterations in sarcoplasmic reticulum (SR) calcium accumulation. This favored alternating and irregular calcium transient amplitudes, causing deterioration of the beat-to-beat stability upon elevation of the stimulation frequency. Overall this data demonstrate that these novel PITX2c HD-mutations might be causative of atrial fibrillation in the carrier.This work was supported by grants from The Spanish Ministry of Science Innovation and Universities [SAF2017-88019-C3-1-R] to L.H.-M. V.J.-S. was employed by CIBERCV [RD12/0042/0002] grant. Work was also supported by a PhD scholarship [FPU18/01250] to S.C., and partially funded by grants from Generalitat de Catalunya [SGR2017-1769] and Fundació Marato TV3 [20152030] to L.H.-M., a translational CNIC grant [2009/08] to D.F., R.C. and L.H.-M. and a grant-in-aid from the Junta de Andalucia Regional Council to D.F. and A.A. [CTS-446]

    Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers

    Get PDF
    Stereoselective drug-channel interactions may help to elucidate the molecular basis of voltage-gated potassium channel block by local anesthetic drugs. We studied the effects of the enantiomers of bupivacaine on a cloned human cardiac potassium channel (hKv1.5). This channel was stably expressed in a mouse Ltk- cell line and studied using the whole-cell configuration of the patch-clamp technique. Both enantiomers modified the time course of this delayed rectifier current. Exposure to 20 microM of either S(-)-bupivacaine or R(+)-bupivacaine did not modify the activation time constant of the current, but reduced the peak outward current and induced a subsequent exponential decline of current with time constants of 18.7 +/- 1.1 and 10.0 +/- 0.9 ms, respectively. Steady-state levels of block (assessed with 250-ms depolarizing pulses to +60 mV) averaged 30.8 +/- 2.5% (n = 6) and 79.5 +/- 3.2% (n = 6) (p < 0.001), for S(-)- and R(+)-bupivacaine, respectively. The concentration dependence of hKv1.5 inhibition revealed apparent KD values of 27.3 +/- 2.8 and 4.1 +/- 0.7 microM for S(-)-bupivacaine and R(+)-bupivacaine, respectively, with Hill coefficients close to unity, suggesting that binding of one enantiomer molecule per channel was sufficient to block potassium permeation. Analysis of the rate constants of association (k) and dissociation (l) yielded similar values for l (24.9 s-1 vs. 23.6 s-1 for S(-)- and R(+)-bupivacaine, respectively) but different association rate constants (1.0 x 10(6) vs. 4.7 x 10(6) M-1 s-1 for S(-)- and R(+)-bupivacaine, respectively). Block induced by either enantiomer displayed a shallow voltage dependence in the voltage range positive to 0 mV, i.e., where the channel is fully open, consistent with an equivalent electrical distance delta of 0.16 +/- 0.01. This suggested that at the binding site, both enantiomers of bupivacaine experienced 16% of the applied transmembrane electrical field, referenced to the inner surface. Both bupivacaine enantiomers reduced the tail current amplitude recorded on return to -40 mV and slowed their time course relative to control, resulting in a "crossover" phenomenon. These data indicate 1) the charged form of both bupivacaine enantiomers block the hKv1.5 channel after it opens, 2) binding occurs within the transmembrane electrical field, 3) unbinding is required before the channel can close, 4) block of hKv1.5 channels by bupivacaine is markedly stereoselective, with the R(+)-enantiomer being the more potent one, 5) this stereoselective block was associated with a 1.11 -kcal/mol difference in binding energy between both enantiomers, and 6) the stereoselectivity derives mainly from a difference in the association rate constants, suggesting that the S(-)-enantiomer is less likely to access the binding site in an optimal configuration
    corecore