1,074 research outputs found

    Computer modeling of arc drivers

    Get PDF
    Model is generated from description of element connections involved in complete arc network, list of corresponding circuit element values, description of circuit current excitation, and list of out-puts desired. Waveform of current is determined by structure of capacitor storage system, driver geometry, and preset driver conditions

    Exploding wire initiation and electrical operation of a 40-kV system for arc-heated drivers up to 10 feet long

    Get PDF
    Exploding wire initiation and electrical operation of 40 kV system for arc heated drivers up to 10 feet lon

    Arc driver operation for either efficient energy transfer or high-current generator

    Get PDF
    An investigation is made to establish predictable electric arcs along triggered paths for research purposes, the intended application being the heating of the driver gas of a 1 MJ electrically driven shock tube. Trigger conductors consisting of wires, open tubes, and tubes pressurized with different gases were investigated either on the axis of the arc chamber or spiraled along the chamber walls. Design criteria are presented for successful arc initiation with reproducible voltage-current characteristics. Results are compared with other facilities and several application areas are discussed

    The Development of Jet-engine Nacelles for a High-speed Bomber Design

    Get PDF
    The results of an experimental investigation made for the purpose of developing suitable jet-engine nacelle designs for a high-speed medium bomber are presented. Two types of nacelles were investigated, the first enclosing two 4000-pounds-thrust jet engines and a 65-inch-diameter landing wheel and the second enclosing a single 4000-pounds-thrust jet engine. Both types of nacelles were tested in positions underslung beneath the wing and centrally located on the wing. This report summarizes the investigation which was performed at low speed for the purpose of developing entrance and body shapes of suitable form. Included are results from the high-speed portion of the investigation on the characteristics of an underslung nacelle

    Modelling DNA Origami Self-Assembly at the Domain Level

    Full text link
    We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami
    corecore