1,814 research outputs found

    Evidence for a Massive Dark Object in NGC 4350

    Get PDF
    In this work we build a detailed dynamic model for a S0 galaxy possibly hosting a central massive dark object (MDO). We show that the photometric profiles and the kinematics along the major and minor axes, including the h3 and h4 profiles, imply the presence of a central MDO of mass M = 1.5 - 9.7 10^8 solar masses, i.e. 0.3-2.8% of the mass derived for the stellar spheroidal component. Models without MDO are unable to reproduce the kinematic properties of the inner stars and of the rapidly rotating nuclear gas. The stellar population comprise of an exponential disc (27% of the light) and a diffuse spheroidal component (73% of the light) that cannot be represented by a simple de Vaucouleurs profile at any radius. The M/L ratios we found for the stellar components (respectively 3.3 and 6.6) are typical of those of disc and elliptical galaxies.Comment: 9 pages, 4 encapsulated postscript figures. Requires mn.sty, psfig.sty. Accepted for publication in MNRA

    On syntheses of the X-ray background with power-law sources

    Get PDF
    The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies

    CAIRNS: The Cluster And Infall Region Nearby Survey I. Redshifts and Mass Profiles

    Full text link
    The CAIRNS (Cluster And Infall Region Nearby Survey) project is a spectroscopic survey of the infall regions surrounding eight nearby, rich, X-ray luminous clusters of galaxies. We collect 15665 redshifts (3471 new or remeasured) within \sim 5-10 Mpc of the centers of the clusters, making it the largest study of the infall regions of clusters. We determine cluster membership and the mass profiles of the clusters based on the phase space distribution of the galaxies. All of the clusters display decreasing velocity dispersion profiles. The mass profiles are fit well by functional forms based on numerical simulations but exclude an isothermal sphere. Specifically, NFW and Hernquist models provide good descriptions of cluster mass profiles to their turnaround radii. Our sample shows that the predicted infall pattern is ubiquitous in rich, X-ray luminous clusters over a large mass range. The caustic mass estimates are in excellent agreement with independent X-ray estimates at small radii and with virial estimates at intermediate radii. The mean ratio of the caustic mass to the X-ray mass is 1.03\pm0.11 and the mean ratio of the caustic mass to the virial mass (when corrected for the surface pressure term) is 0.93\pm0.07. We further demonstrate that the caustic technique provides reasonable mass estimates even in merging clusters.Comment: 54 pages, 18 figures, to appear in The Astronomical Journa
    corecore