272 research outputs found

    Combination Forecasts of Bond and Stock Returns: An Asset Allocation Perspective

    Get PDF
    We investigate the out-of-sample forecasting ability of the HML, SMB, momentum, short-term and long-term reversal factors along with their size and value decompositions on U.S. bond and stock returns for a variety of horizons ranging from the short run (1 month) to the long run (2 years). Our findings suggest that these factors contain significantly more information for future bond and stock market returns than the typically employed financial variables. Combination of forecasts of the empirical factors turns out to be particularly successful, especially from an an asset allocation perspective. Similar findings pertain to the European and Japanese markets

    Forecasting House Prices in Germany

    Full text link
    In the academic debate there is a broad consensus that house price fluctuations have a substantial impact on financial stability and real economic activity. Therefore, it is important to have timely information on actual and expected house price developments. The aim of this paper is to measure the latest price movements in different real estate markets in Germany and forecast near-term price developments. Therefore we construct hedonic house price indices based on real estate advertisements on the internet platform ImmobilienScout24. Then, starting with a naive AR(p) model as a benchmark, we investigate whether VAR and ARDL models using additional macroeconomic information can improve the forecasting performance as measured by the mean squared forecast error (MSFE). While these models reduce the forecast error only slightly, forecast combination approaches enhance the predictive power considerably.Die Finanz- und Wirtschaftskrise hat erneut gezeigt, dass Preisfluktuationen am Immobilienmarkt nicht nur einen substanziellen Einfluss auf die Finanzmarktstabilität sondern auch auf die gesamtwirtschaftliche Aktivität ausüben. Demnach ist es aus makroökonomischer Sicht wichtig, Immobilienpreisentwicklungen frühzeitig erkennen und akkurat prognostizieren zu können. Ziel dieser Arbeit ist es, Preisentwicklungen für Deutschland in verschieden Segmenten des Immobilienmarktes am aktuellen Rand zu erfassen und für die kurze Frist von bis zu sechs Monaten zu prognostizieren. Basierend auf monatlich verfügbaren Immobilieninseraten auf der Internetplattform von ImmobilienScout24 werden dazu in einem ersten Schritt hedonische Preisindizes gebildet. In einem zweiten Schritt wird die Entwicklung dieser Preisindizes prognostiziert. Beginnend mit einem einfachen AR(p)-Prozess wird der Informationsgehalt verschiedener zusätzlicher Indikatoren mit Hilfe von VAR und ARDL-Modellen untersucht. Während sich der durchschnittliche quadratische Schätzfehler in den einzelnen Modellen im Vergleich zum AR-Modell nur geringfügig verringert, zeigt sich, dass mit Hilfe von geeigneten Prognosekombinationen die Prognosegüte signifikant verbessert werden kann

    Predicting the Equity Market with Option Implied Variables

    Full text link
    We comprehensively analyze the predictive power of several option implied variables for monthly S & P 500 excess returns and realized variance. The correlation risk premium (CRP) emerges as a strong predictor of both excess returns and realized variance. This is true both in- and out-of-sample. A timing strategy based on the CRP leads to utility gains of more than 4.63% per annum. In contrast, the variance risk premium (VRP), which strongly predicts excess returns, does not lead to economic gains

    In-Sample and Out-of-Sample Prediction of Stock Market Bubbles: Cross-Sectional Evidence

    Full text link
    We evaluate the informational content of ex post and ex ante predictors of periods of excess stock (market) valuation. For a cross section comprising 10 OECD economies and a time span of at most 40 years alternative binary chronologies of price bubble periods are determined. Using these chronologies as dependent processes and a set of macroeconomic and financial variables as explanatory variables, logit regressions are carried out. With model estimates at hand, both in-sample and out-of-sample forecasts are made. Overall, the degree of ex ante predictability is limited if an analyst targets the detection of particular turning points of market valuation. The set of 13 potential predictors is classified in measures of macroeconomic or monetary performance, stock market characteristics, and descriptors of capital valuation. The latter turn out to have strongest in-sample and out-of-sample explanatory content for the emergence of price bubbles. In particular, the price to book ratio is fruitful to improve the ex-ante signalling of stock price bubbles
    corecore