642 research outputs found
Decays of the Meson to a -Wave Charmonium State or
The semileptonic decays,
, and the two-body
nonleptonic decays, , (here and
denote and respectively, and
indicates a meson) were computed. All of the form factors appearing in the
relevant weak-current matrix elements with as its initial state and a
-wave charmonium state as its final state for the decays were precisely
formulated in terms of two independent overlapping-integrations of the
wave-functions of and the -wave charmonium and with proper kinematics
factors being `accompanied'. We found that the decays are quite sizable, so
they may be accessible in Run-II at Tevatron and in the foreseen future at LHC,
particularly, when BTeV and LHCB, the special detectors for B-physics, are
borne in mind. In addition, we also pointed out that the decays may potentially be used as a fresh window to look for the
charmonium state, and the cascade decays,
() with one of the radiative decays
being followed accordingly, may affect
the observations of meson through the decays () substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation
and adding reference
The meson annihilation to leptons and inclusive light hadrons
The annihilation of the meson to leptons and inclusive light hadrons is
analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find
that the decay mode, which escapes from the helicity suppression, contributes a
sizable fraction width. According to the analysis, the branching ratio due to
the contribution from the color-singlet component of the meson can be of
order (10^{-2}). We also estimate the contributions from the color-octet
components. With the velocity scaling rule of NRQCD, we find that the
color-octet contributions are sizable too, especially, in certain phase space
of the annihilation they are greater than (or comparative to) the color-singlet
component. A few observables relevant to the spectrum of charged lepton are
suggested, that may be used as measurements on the color-octet and
color-singlet components in the future experiments. A typical long
distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.
Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation
Excitation-energy-gated two-fragment correlation functions have been studied
between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in
and p + Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c.
Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of
one order of magnitude in the fragment emission time in the excitation energy
interval 2-5A MeV, followed by a nearly constant breakup time at higher
excitation energy. The observed decrease in emission time is shown to be
strongly correlated with the increase of the fragment emission probability, and
the onset of thermally-induced radial expansion. This result is interpreted as
evidence consistent with a transition from surface-dominated to bulk emission
expected for spinodal decomposition.Comment: 11 pages including 3 postscript figures (1 color
Thermally-induced expansion in the 8 GeV/c + Au reaction
Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c
beams incident on a Au target have been analyzed in
order to deduce the possible existence and influence of thermal expansion. The
average fragment kinetic energies are observed to increase systematically with
fragment charge but are nearly independent of excitation energy. Comparison of
the data with statistical multifragmentation models indicates the onset of
extra collective thermal expansion near an excitation energy of E*/A
5 MeV. However, this effect is weak relative to the radial
expansion observed in heavy-ion-induced reactions, consistent with the
interpretation that the latter expansion may be driven primarily by dynamical
effects such as compression/decompression.Comment: 12 pages including 4 postscript figure
A note on Zolotarev optimal rational approximation for the overlap Dirac operator
We discuss the salient features of Zolotarev optimal rational approximation
for the inverse square root function, in particular, for its applications in
lattice QCD with overlap Dirac quark. The theoretical error bound for the
matrix-vector multiplication is derived. We check that
the error bound is always satisfied amply, for any QCD gauge configurations we
have tested. An empirical formula for the error bound is determined, together
with its numerical values (by evaluating elliptic functions) listed in Table 2
as well as plotted in Figure 3. Our results suggest that with Zolotarev
approximation to , one can practically preserve the exact
chiral symmetry of the overlap Dirac operator to very high precision, for any
gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references
added, to appear in Phys. Rev.
Thermal excitation of heavy nuclei with 5-15 GeV/c antiproton, proton and pion beams
Excitation-energy distributions have been derived from measurements of
5.0-14.6 GeV/c antiproton, proton and pion reactions with Au target
nuclei, using the ISiS 4 detector array. The maximum probability for
producing high excitation-energy events is found for the antiproton beam
relative to other hadrons, He and beams from LEAR. For protons
and pions, the excitation-energy distributions are nearly independent of hadron
type and beam momentum above about 8 GeV/c. The excitation energy enhancement
for beams and the saturation effect are qualitatively consistent with
intranuclear cascade code predictions. For all systems studied, maximum cluster
sizes are observed for residues with E*/A 6 MeV.Comment: 14 pages including 5 figures and 1 table. Accepted in Physics Letter
B. also available at http://nuchem.iucf.indiana.edu
Nanomechanical-resonator-assisted induced transparency in a Cooper-pair-box system
We propose a scheme to demonstrate the electromagnetically induced
transparency (EIT) in a system of a superconducting Cooper-pair box coupled to
a nanomechanical resonator. In this scheme, the nanomechanical resonator plays
an important role to contribute additional auxiliary energy levels to the
Cooper-pair box so that the EIT phenomenon could be realized in such a system.
We call it here resonator-assisted induced transparency (RAIT). This RAIT
technique provides a detection scheme in a real experiment to measure physical
properties, such as the vibration frequency and the decay rate, of the coupled
nanomechanical resonator.Comment: To appear in New Journal of Physics: Special Issue "Mechanical
Systems at the Quantum Limit
Incorporating Radial Flow in the Lattice Gas Model for Nuclear Disassembly
We consider extensions of the lattice gas model to incorporate radial flow.
Experimental data are used to set the magnitude of radial flow. This flow is
then included in the Lattice Gas Model in a microcanonical formalism. For
magnitudes of flow seen in experiments, the main effect of the flow on
observables is a shift along the axis.Comment: Version accepted for publication in Phys. Rev. C, Rapid Communicatio
- …